Bioretention Data Sheet

Designer

Bioretention (identifying name or number):
1) Determine Water Quality Volume (WQv = C 0.75 A/12)
A. Contributing drainage area (DA acres or ft²):
B. Impervious fraction of the contrib. drainage area (post-dev.):
C. Calculate C, $C = 0.858i^3 - 0.78i^2 + 0.774i + 0.04$:
D. Water Quality Volume (ac-ft or ft³):
2) Determine minimum filter bed area (min. FBA)
If site > 25% impervious then min. FBA = I.A. x 0.05 (ac or ft²) (I.A. = Impervious Area)
If site ≤ 25% impervious then WQv ÷ 1 (acres or ft²):
3) Provide dimensions & elevations (below & on diagrams).
A. Depth of ponding (max 12", d _{Ponding Area)} = WQv ÷ min FBA) (ft):
B. Side slopes (maximum 3:1, ft horizontal: ft vertical):
C. Width and length of area (attach a sketch for irregular shapes) W= L=
D. Depth of soil media (2' minimum, d _{Soil Media} ft):
E. Depth and type of filter layers (d _{Clean sand} ft/ODOT #):
(d _{Clean Pea Gravel} ft/ODOT #):
F. Depth and type of gravel (dclean No. 57ft/ODOT#):
G. Size of underdrain (inches):
H. Bottom elevation of bioretention:
4) Check that area drains within allowable time period.
A. Depth of Ponding (ft)
B. Infiltration rate of settled soil media (0.5 in/hr)
C. Time to drain through soil media (hours)
D. Will an orifice be used to control underdrain flow (yes or no)?
E. If yes, what size orifice will be used?
5) Optimize runoff reduction through infiltration.
A. In-situ soil – soil survey series name:
B. In-situ infiltration test results (infiltration rate in/hr):
C. Hydrologic Soil Group (HSG) and target site runoff to infiltrate: □ A 2" runoff □ B 1.5" runoff □ C 0.75" runoff □ D <35% clay 0.5" runoff □ D = 0.55% clay 0.55" runoff □ 0.00 runoff
□ D > 35% clay 0.25" runoff □ Other:" runoff
D. Infiltration sump depth (d _{sump}) (ft) and volume (ft ³).
F Is a sump created with an elevated outlet (see figure 2)?

Figure 1 Filter Bed and Side slopes

Figure 2 Bioretention Depths and Elevations

Elevations

Bioretention Data Sheet

6) Pretreat runoff depending upon type of flow (Specify type of flow and practices).	
□ Sheet flow (gravel verge and grass filter strip):	
□ Concentrated flow (grass swale, forebay, other):	
7) Outlet and overflow	
A. □ Bioretention is in-line (overflow & inflow have the same route)?	
B. □ Bioretention is off-line (inflow and overflow exit by different routes)?	
C. Type of overflow or outlet structure (drop Inlet, weir, spillway, other):	
D. Are peak discharge requirements managed with the bioretention outlet (yes or no)?	
E. Local peak discharge requirements: □ 1) None □ 2) Offsite & downstream □ 3) Over bioretention	
If 3) is checked, describe outlet configuration for peak discharge control:	
If 3) is checked, what additional volume (to WQv) is managed on the bioretention area? (ft³)	
8) Other bioretention features	
A. Are perimeter drains used to lower water table (yes or no):	
Approximate perimeter drain elevation (mark on diagram as well):	
B. Outfall of pipe spillway from overflow outlet if appropriate (invert elevation):	
C. Liner (yes or no; state reason, e.g. high groundwater, high pollution potential or other reasons):	
D. Vegetation planned:	
E. Other notes:	