Engineering Guide #69: Air Dispersion Modeling Guidance

This engineering guide provides responses to many commonly asked modeling questions to develop a basis for consistent application of modeling methods and techniques. Although many projects will require case-specific responses, this document is designed to aid in understanding the framework of permit modeling in Ohio such that permitting personnel, regulated entities and the public will have an understanding of expected outcomes and approaches to modeling for many applications. The answers in this document do not reflect a rule or regulation, are not intended to be treated as a rule or regulation and are subject to change\(^1\). If you have additional questions on modeling or comments on this guide, contact the Division of Air Pollution Control at (614) 644-2270.

\(^1\) This Engineering Guide is not binding, does not have the force and effect of law, is not a “rule” as defined in section 119.01(C) of the Revised Code, and is not a “policy” as defined in section 3745.30(A)(1) of the Revised Code.
Table of Contents

<table>
<thead>
<tr>
<th>Acronyms</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>ii</td>
</tr>
<tr>
<td>General FAQ</td>
<td>1</td>
</tr>
<tr>
<td>Question 1. What are Ohio EPA air quality modeling requirements?</td>
<td>1</td>
</tr>
<tr>
<td>Question 2. Will Ohio EPA perform air dispersion modeling for my facility?</td>
<td>1</td>
</tr>
<tr>
<td>Question 3. What sources require “state-only” modeling?</td>
<td>2</td>
</tr>
<tr>
<td>Question 4. What air quality models are recommended or required?</td>
<td>2</td>
</tr>
<tr>
<td>Question 5. Can screening models be used for more than one source?</td>
<td>3</td>
</tr>
<tr>
<td>Question 6. When is a Class I Modeling Analysis required?</td>
<td>4</td>
</tr>
<tr>
<td>Question 7. How do I demonstrate net air quality improvement in nonattainment areas?</td>
<td>5</td>
</tr>
<tr>
<td>Source characterization</td>
<td>5</td>
</tr>
<tr>
<td>Question 8. What modeled emission rate(s) should be used for my facility?</td>
<td>5</td>
</tr>
<tr>
<td>Question 9. What other sources do I include in major source PSD and NAAQS analyses?</td>
<td>6</td>
</tr>
<tr>
<td>Model inputs</td>
<td>7</td>
</tr>
<tr>
<td>Question 10. If a source emits more than one pollutant, is it necessary to model each one separately?</td>
<td>7</td>
</tr>
<tr>
<td>Question 11. What meteorological input is required or recommended for dispersion modeling?</td>
<td>8</td>
</tr>
<tr>
<td>Question 12. What receptor grids should I use?</td>
<td>8</td>
</tr>
<tr>
<td>Question 13. Which averaging times should I use?</td>
<td>9</td>
</tr>
<tr>
<td>Question 15. How do I determine whether to apply urban or rural dispersion coefficients?</td>
<td>10</td>
</tr>
<tr>
<td>Question 16. How do I obtain background values for NAAQS cumulative impact analyses in Ohio?</td>
<td>11</td>
</tr>
<tr>
<td>Thresholds and limits</td>
<td>12</td>
</tr>
<tr>
<td>Question 17. What are Ohio significant emission rates which trigger modeling?</td>
<td>12</td>
</tr>
<tr>
<td>Question 18. Can a modification trigger a modeling requirement without an emission rate increase?</td>
<td>12</td>
</tr>
<tr>
<td>Question 19. What are Ohio’s GAIL?</td>
<td>13</td>
</tr>
<tr>
<td>Question 20. What if modeling estimates consumption of more than one-half of available PSD increment?</td>
<td>13</td>
</tr>
<tr>
<td>Question 21. Do I include minor or exempt sources for a project exceeding SER thresholds?</td>
<td>13</td>
</tr>
<tr>
<td>Question 22. Are there exceptions to modeling thresholds?</td>
<td>14</td>
</tr>
<tr>
<td>Pollutant-specific</td>
<td>14</td>
</tr>
<tr>
<td>Question 23. How do I estimate impact from secondary pollutants: ozone and PM$_{2.5}$?</td>
<td>14</td>
</tr>
<tr>
<td>Question 24. Are there special modeling requirements for NO$_2$?</td>
<td>15</td>
</tr>
<tr>
<td>Question 25. Do I need to model Greenhouse Gases?</td>
<td>15</td>
</tr>
<tr>
<td>Air toxics</td>
<td>16</td>
</tr>
<tr>
<td>Question 26. Do I need to model air toxics sources?</td>
<td>16</td>
</tr>
<tr>
<td>Question 27. Should air toxics sources be modeled if there is no Time Weighted Average?</td>
<td>16</td>
</tr>
<tr>
<td>Question 28. What special requirements exist for sources of fluoride?</td>
<td>17</td>
</tr>
<tr>
<td>Nonstandard sources</td>
<td>17</td>
</tr>
<tr>
<td>Question 29. Is there any special guidance for nonstandard point source emissions?</td>
<td>17</td>
</tr>
<tr>
<td>Question 30. Are fugitive emissions modeled?</td>
<td>17</td>
</tr>
<tr>
<td>Question 31. How do I model rain caps and horizontal releases?</td>
<td>17</td>
</tr>
<tr>
<td>Question 32. How do I account for a building with a pitched roof or multiple tiers?</td>
<td>18</td>
</tr>
<tr>
<td>Question 33. How do I model flares?</td>
<td>18</td>
</tr>
</tbody>
</table>
Question 34. How do I model combustion turbines? ... 21
Question 35. How do I model sources in a building without identified vents to the outside? 21
Question 36. Do emissions from start-ups and shut-downs require modeling? 22
Question 37. Do I model intermittent sources? .. 22
Question 38. How do I model hot-mix asphalt plants? ... 22

Submission to Ohio EPA ... 22
Question 39. When are modeling protocols required? ... 22
Question 40. What files need to be submitted to Ohio EPA for a modeling review? 23

LIST OF TABLES
Table 1. Meteorological assignments by county .. C-1
Table 1a. Supplemental map to Table 1 ... C-3
Table 2. National Weather Service anemometer height and station numbers C-4
Table 3. Modeling standards and screening levels ... C-6

APPENDICES
Appendix A. AERSCREEN Model Application Guidance .. A-1
Appendix B. Air Quality Modeling Report Guidelines ... B-1
Appendix C. Reference Tables .. C-1
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGIH</td>
<td>American Conference of Governmental Industrial Hygienists</td>
</tr>
<tr>
<td>AIRS</td>
<td>Aerometric Information Retrieval System</td>
</tr>
<tr>
<td>AQRV</td>
<td>Air Quality Related Values</td>
</tr>
<tr>
<td>ARM2</td>
<td>Ambient Ratio Method Version 2</td>
</tr>
<tr>
<td>BPIPPRM</td>
<td>Building Profile Input Program for PRIME</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CAMx</td>
<td>Comprehensive Air Quality Model with Extensions</td>
</tr>
<tr>
<td>CMAQ</td>
<td>Community Multiscale Air Quality</td>
</tr>
<tr>
<td>DAPC</td>
<td>Division of Air Pollution Control</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DO/LAA</td>
<td>District Office/Local Air Agency</td>
</tr>
<tr>
<td>EIS</td>
<td>Emission Inventory System</td>
</tr>
<tr>
<td>FLAG</td>
<td>Federal Land Managers’ Air Quality Values Work Group</td>
</tr>
<tr>
<td>FLM</td>
<td>Federal Land Managers</td>
</tr>
<tr>
<td>GAIi</td>
<td>Generally Acceptable Incremental Impact</td>
</tr>
<tr>
<td>GEP</td>
<td>Good Engineering Practice</td>
</tr>
<tr>
<td>ISC</td>
<td>Industrial Source Complex</td>
</tr>
<tr>
<td>ISR</td>
<td>In-stack Ratio</td>
</tr>
<tr>
<td>MAGLC</td>
<td>Maximum Acceptable Ground-Level Concentration</td>
</tr>
<tr>
<td>MCH</td>
<td>Modeling Clearinghouse</td>
</tr>
<tr>
<td>MMIF</td>
<td>Mesoscale Model Interface</td>
</tr>
<tr>
<td>NAA</td>
<td>Nonattainment Area</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NED</td>
<td>National Elevation Dataset</td>
</tr>
<tr>
<td>NSR</td>
<td>New Source Review</td>
</tr>
<tr>
<td>OAC</td>
<td>Ohio Administrative Code</td>
</tr>
<tr>
<td>OLM</td>
<td>Ozone Limiting Method</td>
</tr>
<tr>
<td>ORC</td>
<td>Ohio Revised Code</td>
</tr>
<tr>
<td>PRIME</td>
<td>Plume Rise Model Enhancements</td>
</tr>
<tr>
<td>PSD</td>
<td>Prevention of Significant Deterioration</td>
</tr>
<tr>
<td>PTI</td>
<td>Permit-to-Install</td>
</tr>
<tr>
<td>PTIO</td>
<td>Permit-to-Install and Operate</td>
</tr>
<tr>
<td>PVMRM</td>
<td>Plume Volume Molar Ratio Method</td>
</tr>
<tr>
<td>SCICHEM</td>
<td>Second-order Closure Integrated Puff Model with Chemistry</td>
</tr>
<tr>
<td>SCRAM</td>
<td>Support Center for Regulatory Air Models</td>
</tr>
<tr>
<td>SER</td>
<td>Significant Emission Rate</td>
</tr>
<tr>
<td>SIA</td>
<td>Significant Impact Area</td>
</tr>
<tr>
<td>SIL</td>
<td>Significant Impact Level</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Plan</td>
</tr>
<tr>
<td>SMC</td>
<td>Significant Monitoring Concentration</td>
</tr>
<tr>
<td>TLV</td>
<td>Threshold Limit Value</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Service</td>
</tr>
</tbody>
</table>
Abbreviations

ADJ_U* adjust u* option where u* is surface friction velocity
AERMET AERMOD meteorological preprocessor
AERMINUTE 1-minute ASOS wind data pre-processor for AERMET
AERMAP terrain pre-processor for AERMOD
AERMOD American Meteorological Society/Environmental Protection Agency Regulatory Model
AERSCREEN screening-level air quality model based on AERMOD
AERSURFACE surface characteristic pre-processor for AERMET
H2SO4 sulfuric acid mist
NOx oxides of nitrogen
Ohio EPA Ohio Environmental Protection Agency
PM2.5 particulate matter with aerodynamic diameter less than 2.5 microns
PM10 particulate matter with aerodynamic diameter less than 10 microns
SCREEN3 screening version of the ISC3 model
SO2 sulfur dioxide
General FAQ

Question 1. What are Ohio EPA air quality modeling requirements?

Where applicable, Ohio EPA is consistent with the Guideline and supplementary guidance. These resources do not address every detail of problems that confront modelers, who may require a case-specific response. Air dispersion modeling helps demonstrate and predict the relationship between a source or sources and effects on ambient air quality. Modeling is often necessary to demonstrate that a project\(^2\) will:

1) not cause or significantly contribute to ambient concentrations in excess of either of the federally-mandated NAAQS or PSD increments;
2) comply with Ohio EPA's policy of no new source consuming more than one half of the available PSD increment\(^3\); and/or
3) not cause an exceedance of a MAGLC for air toxics\(^4\).

If potential-to-emit a pollutant or net emissions increase is considered significant\(^5\), the new or modified source or sources must be evaluated to estimate the maximum incremental impact. Significant emission rates are identified in Table 3 of this guide. New or modified sources with nonexempt emissions of air toxics must be evaluated to determine maximum impact of these emissions for comparison against the MAGLC as required by procedures in division (F)(4) of section 3704.03 of Ohio Revised Code.

Where a permit application includes both emission increases and decreases, generally restricted to a contemporaneous 5- or 10-year period, the net increase should be modeled. Ohio EPA must approve netting emissions prior to modeling.

Modeling shall be based on information including, but not limited to, emission control devices or methods, operational restrictions, stack parameters, and emission dispersion devices or methods that may affect ground-level concentrations, either individually or in combination. If there are several sources in the same project, combined peak impact must be evaluated.

Question 2. Will Ohio EPA perform air dispersion modeling for my facility?

No, each owner/operator is responsible for conducting and submitting permit modeling analysis when required, and Ohio EPA is responsible for reviewing for reproducibility, completeness, applicability, and protectiveness or impact. Please contact your DO/LAA for more information.

\(^2\) "Air contaminant source project" as defined in Ohio Administrative Code 3745-31-01(J)

\(^3\) One half the increment is the effective goal for all new source modeling of criteria pollutants, regardless of the size or location of the new source. Question 19 and Question 20 in this guide provides more information on this policy.

\(^4\) References to “toxics” or “air toxics” in this document refers to regulated toxic air contaminants listed in Ohio Administrative Code rule 3745-114-01. The section Air toxics in this guide has more information on air toxics modeling. Please refer to Ohio EPA, DAPC Engineering Guide 70 “Air Toxics Analysis” for further guidance. Available at: epa.ohio.gov/portals/27/engineer/eguides/Guide70Final20170509.pdf

\(^5\) Significant is defined in Ohio Administrative Code 3745-31-01(VVVV)/(1).
Question 3. What sources require “state-only” modeling?

Throughout this guide, the term “state-only” is used to refer to facilities that require modeling for protection against Ohio’s MAGLC for air toxics and GAII for criteria and other pollutants. Any owner/operator of a facility whose emissions increase exceeds the Significant Emissions Rates shown in Table 3 that may not otherwise be required to submit modeling for federal programs is considered a state-only modeling project.

Question 4. What air quality models are recommended or required?

Size and complexity of source(s), receptor network details, toxicity and reactivity of emissions, regulatory purpose, and other factors influence whether a screening or refined model should be employed. Screening models provide conservative estimates of air quality impacts based on simplified assumptions of model inputs. Output from a screening model may demonstrate protection of health and environment or warrant more sophisticated refined modeling. Except in certain circumstances, the most recent version of a model is necessary. Terrain and building downwash must be included.

Most models discussed in the Guideline are available for public download at the U.S. EPA SCRAM website. The SCRAM website also contains users’ manuals, ancillary programs, meteorological data, and supplementary model application guidance. Meteorological data for Ohio sources and an electronic version of this engineering guide are available on the Ohio EPA DAPC website.

Screening models:

AERSCREEN is the U.S. EPA recommended screening model for most applications with all types of terrain and downwash applications. AERSCREEN is the required screening model for all NAAQS and PSD projects or any modeling analyses performed in fulfillment of a federal requirement. SCREEN3 modeling may be submitted to Ohio EPA for state-only permit modeling.

While conversion factors for averaging times other than 1-hour are calculated and provided in AERSCREEN output, the following factors must be applied by the user to convert short-term estimates in SCREEN3.

<table>
<thead>
<tr>
<th>Desired Averaging Period</th>
<th>1-hr</th>
<th>3-hr</th>
<th>8-hr</th>
<th>24-hr</th>
<th>Month</th>
<th>Quarter</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple*</td>
<td>1</td>
<td>0.9</td>
<td>0.7</td>
<td>0.4</td>
<td>0.18</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>Complex*</td>
<td>1</td>
<td>0.7</td>
<td>0.5</td>
<td>0.15</td>
<td>0.06</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

*U.S. EPA has recommended separate conversion factors for simple terrain and complex terrain in

6 Ohio’s Generally Acceptable Incremental Impacts is discussed in Question 19.
8 Ohio EPA. “AERMET output files for AERMOD model input.” epa.ohio.gov/dapc/model/modeling/metfiles.aspx
Additional guidance on AERSCREEN is provided in Appendix A in this guide.

Whereas most routine releases, even of heavy compounds, will have similar density to air from dilution, screening evaluations of emergency release scenarios or sources emitting 'light' or 'heavy' plumes may use one of the commercially available toxic release models to determine if ambient impacts exceed the applicable MAGLC.

Refined models:
AERMOD is the preferred refined model for regulatory applications in all types of terrain and for aerodynamic building downwash using representative meteorological data in the regulatory default modes. Several commercial versions of AERMOD have been granted model equivalency by U.S. EPA. While deposition is available as an option in AERMOD, its application should be evaluated by Ohio EPA on a case-by-case basis. For refined air toxics analyses, the same procedures used for criteria pollutants are used to determine ambient concentrations. (ISC is no longer accepted by Ohio EPA.)

Chemical transport models:
As indicated in Question 23, if you believe chemical transport modeling may be necessary, discuss with the Ohio EPA air quality modeling unit as early as possible when developing a protocol. Current U.S. EPA guidance indicates that photochemical grid modeling will only be required for the largest sources. Do not initiate this type of analysis without consulting air modeling staff at DAPC.

U.S. EPA recommends models that simulate atmospheric chemical transformations, e.g. CAMx and CMAQ, where a more refined tier 2 analysis for ozone or secondary PM$_{2.5}$ may be necessary. Reduced-form models, e.g., SCICHEM, reflect underlying atmospheric science with reduced computational resources of complex, numerical photochemical or Lagrangian models and may be appropriate in such cases. U.S. EPA has issued a clarification memorandum11 to the effect that CAMx and CMAQ for PSD compliance do not require formal alternative model approval via the MCH. A modeling protocol, however, is required to approve model selection and use. As indicated in Question 23, if you believe chemical transport modeling may be necessary, discuss with the Ohio EPA air quality modeling unit as early as possible when developing a protocol.

Question 5. Can screening models be used for more than one source?

Yes, screening models can be used to conservatively estimate maximum modeled concentrations from more than one source even though they are designed as single-source models. One of these approaches is generally adequate for screening purposes:

1) Model each source individually; sum the maximum modeled concentrations (as though occurring at the same receptor); and compare to the applicable standard; or

11 U.S. EPA. (August 4, 2017). “Use of Photochemical Grid Models for Single-Source Ozone and secondary PM$_{2.5}$ impacts for Permit Program Related Assessments and for NAAQS Attainment Demonstrations for Ozone, PM$_{2.5}$ and Regional Haze.”
2) Model combined emissions from a single source closest to the fence line using the worst-case stack flow parameters of the group12. One method for merged parameters is described in EPA guidance on screening procedures13.

Consult your DO/LAA to discuss alternative approaches, if necessary.

Question 6. When is a Class I Modeling Analysis required?

Protection of Class I areas is the responsibility of FLMs, including permit application reviews for adverse impacts on AQRVs14. The FLAG report15 provides guidance on evaluating air pollution effects on public AQRVs in Class I areas and recommends applicants apply a Quantity over Distance (Q/D) test for sources located greater than 50 km from a Class I area, where Q/D = 10 is an appropriate de minimis level to screen out of Class I modeling analysis.

Quantity over Distance test:

\[
\frac{Q \left[SO_2 + NO_x + PM_{10} + H_2SO_4 \right] \text{(tons per year)}}{D \text{(km)}} \leq 10
\]

Q (tons per year) = combined annual emissions of SO\textsubscript{2}, NO\textsubscript{x}, PM\textsubscript{10}, and H\textsubscript{2}SO\textsubscript{4} based on 24-hour maximum allowable emissions. Annual equivalents should be calculated for sources that do not operate year-round by dividing permitted total tons per year (for each pollutant) by hours of operation and multiplying the result by 8760.

D (km) = nearest distance to a Class I area boundary from the source.

Ohio EPA does not generally require Class I screening or analysis for facilities located further than 300 km from a Class I area and accepts the Q/D screening test for all facilities located more than 50 km from a Class I area boundary. If a Class I Modeling Analysis is required, it should be in consultation with Ohio EPA and the appropriate FLM and included in a modeling protocol. Approximate distances from several Ohio cities to regional Class I areas is provided in the table on the following page. Table 3 shows Class I SILs, which Ohio EPA applies to determine significant impact.

\[\text{12 Sometimes determination of worst-case is straightforward (e.g., shortest, coldest, lowest flow stack). When it is not clear, consult your DO/LAA.}\]
\[\text{13 U.S. EPA. (1992). Screening procedures for estimating air quality impact of stationary sources, revised. EPA 454/R-92-019.}\]
\[\text{14 AQRVs are defined as a resource, as identified by the FLM for one or more Federal areas, that may be adversely affected by a change in air quality.}\]
Distances from Ohio cities to nearby Class I Areas (km)

<table>
<thead>
<tr>
<th>City</th>
<th>Mammoth Cave</th>
<th>Dolly Sods/Otter Creek</th>
<th>Great Smokey Mountains</th>
<th>Seney National Wildlife Refuge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akron</td>
<td>560</td>
<td>250</td>
<td>590</td>
<td>650</td>
</tr>
<tr>
<td>Canton</td>
<td>550</td>
<td>230</td>
<td>570</td>
<td>690</td>
</tr>
<tr>
<td>Cincinnati</td>
<td>230</td>
<td>400</td>
<td>370</td>
<td>780</td>
</tr>
<tr>
<td>Cleveland</td>
<td>580</td>
<td>300</td>
<td>630</td>
<td>620</td>
</tr>
<tr>
<td>Columbus</td>
<td>380</td>
<td>280</td>
<td>440</td>
<td>700</td>
</tr>
<tr>
<td>Dayton</td>
<td>310</td>
<td>380</td>
<td>430</td>
<td>700</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>310</td>
<td>270</td>
<td>320</td>
<td>850</td>
</tr>
<tr>
<td>Steubenville</td>
<td>570</td>
<td>160</td>
<td>550</td>
<td>770</td>
</tr>
<tr>
<td>Toledo</td>
<td>520</td>
<td>430</td>
<td>630</td>
<td>520</td>
</tr>
<tr>
<td>Youngstown</td>
<td>620</td>
<td>230</td>
<td>620</td>
<td>700</td>
</tr>
</tbody>
</table>

Question 7. How do I demonstrate net air quality improvement in nonattainment areas?

Proposed construction of major stationary sources or modifications in a nonattainment area (NAA) must comply with OAC 3745-31-25 regarding atmosphere dispersion modeling demonstrations to ensure emissions offsets provide a net air quality benefit. In accordance with OAC 3745-31-22, modeling for net air quality benefits is not required for VOC or NOx emissions in an ozone NAA.

Because NAAs have undergone SIP modeling in the attainment demonstration, Ohio EPA has identified key receptors susceptible to NAAQS violations; these receptors must be included in all NAA NSR projects even if they are outside of the SIA. Where potential offsets could impact these key receptors, modeling must show impact at those locations would be less than or equal to zero. For remaining receptors within the significant impact area, modeling must show no net increase for each averaging period. If modeling demonstrates area-wide receptors with a net increase, the applicant may present a complete NAAQS demonstration for the significant impact area of the project.

Source characterization

Question 8. What modeled emission rate(s) should be used for my facility?

Table 8-2 in the Guideline identifies emission rates of sources for demonstrating NAAQS compliance in a PSD assessment for inert pollutants.

To evaluate short-term standards (≤ 24 hours), model short-term allowable emission rates, if available. Otherwise, model short-term state and/or federally enforceable potential-to-emit emission rates. For state-only permits, model peak short-term rates (for new sources) or increases (for modifications) that the permit allows. For air toxics specifically, model maximum hourly emission rates.

To evaluate long-term standards (quarterly or annual), use representative long-term actual emission rates for existing sources. Annual permit restrictions can be used to develop long-term average emission rates for new or existing sources.

16 Question 9 has more information on determining the SIA.
For a federal netting permit, results of the netting calculation are modeled for comparison to Ohio’s GAII; modeled emissions must be consistent with the permit’s netting evaluation. For state-only netting modeling evaluations, the allowable-to-allowable difference is usually acceptable and must be included in a modeling protocol.

When a modification involves an emission increase only, the net change allowed by the permit is evaluated. The net change is the difference between existing emissions and new allowable emissions for PSD and other federal analyses. For state-only review, the allowable-to-allowable difference is usually acceptable and must be included in a modeling protocol.

If all parameters are unchanged such that no increase in impact would be realized from the permit action, it is considered a like-kind replacement and does not require modeling. Replacements involving changes that may increase peak impact, such as a shorter stack or lower temperature, require modeling. Where a modification of stack parameters may increase the source’s ambient impact, permit allowable emissions are modeled to determine if the impact of the modification is below Ohio’s GAII. If the replacement when viewed alone exceeds Ohio’s GAII, the source being replaced can be evaluated in a refined model using negative emission rates to determine net peak impact; this netting analysis would be compared to Ohio’s GAII.

Question 9. What other sources do I include in major source PSD and NAAQS analyses?

When an air quality analysis has determined a new or modifying source has the potential to cause or contribute to a violation of a NAAQS or PSD increment, it must proceed to a cumulative impact analysis. When reviewing a single-source analysis with sufficient meteorological coverage, Ohio EPA considers any modeled high-high concentration that exceeds its respective SIL, identified in Table 3, as an indication of potential significant ambient impact. The modeling domain includes all locations where the initial demonstration determines emissions may cause a significant ambient impact. This impact area is the area with radius extending from the new or modifying source to:

1) the most distant location where modeling predicted a significant ambient impact will occur, or
2) 50 km, whichever is less.

Section 8.3.3 of the Guideline discusses the identification and characterization of nearby sources that are not adequately captured in background ambient monitoring. The Guideline is not prescriptive with respect to selecting sources to include in a cumulative NAAQS impact analysis and places emphasis on the judgement of the permitting authority in the determination of a final cumulative source inventory. Therefore, the determination of a final inventory of offsite sources will be conducted during the modeling protocol phase of a project, in consultation with Ohio EPA.

17 Modeling of negative emission rates for NO₂ is not recommended since the multi-tiered approach is considered a screening method. Question 24 addresses NO₃ modeling.

18 Refer to Question 11 for meteorological coverage requirements.
Although the NAAQS modeling inventory will be compiled on a case-by-case basis, the following guidelines should be adhered to:

1) All sources within the SIA having potential-to-emit greater than PSD significant emission rates, identified in Table 3, must be included in the NSR NAAQS analysis.

2) All major sources within 20 km of the new source with potentials-to-emit greater than 100 tons per year should initially be considered for inclusion in the modeling inventory. Sources within 20 km of the new source can be excluded if it can be demonstrated that a source or group of sources is represented by background concentrations.

3) Major sources with potentials-to-emit greater than 100 tons per year located beyond 20 km and within 50 km of the new source should initially be considered for inclusion in the modeling inventory. These more-distant sources may be screened out if their facility-wide actual emission rate in tons per year is less than 20D, where D is the distance in kilometers between the source project and the potentially interacting source. Additional sources may be screened out if it can be demonstrated that a source or group of sources is adequately represented by background.

All PSD sources located within the SIA or an area where a PSD baseline has been triggered, whichever is larger, must be included in PSD increment analyses. PSD sources located outside of this area that are within 50 km and interact with the new source must also be included but may be screened out using the 20D approach.

Ohio EPA must be advised on what sources were screened and excluded and reasoning for the exclusion. Any or all of these sources may be required by Ohio EPA for inclusion based on professional judgement.

Inventory data for modeling nearby sources should be obtained from the state EIS or the national AIRS, which contain basic modeling source parameters, e.g., release height, stack diameter, exit temperature, exit velocity, emission rate, etc. Ohio EPA’s EIS has placed several data sets on their website\(^\text{19}\). While later data sets have significant amounts of current information, it is important to check the 1990 and 1995 data, which contain information on short-term allowable emission rates and capacities. These are important for determining maximum short-term allowable emission rates for the significant sources consistent with Section 9.1 of the Guideline. If source information is missing or suspect, contact your DO/LAA for consultation and corrections. The most recent emissions inventory should be used in the modeling analysis.

Model inputs

Question 10. If a source emits more than one pollutant, is it necessary to model each one separately?

Gaussian models such as AERMOD, AERSCREEN, and SCREEN3 are linear with respect to emission rates. As such, results from a single run may be adjusted for each pollutant when emission characteristics are equivalent for each pollutant. Ohio EPA suggests an approach of modeling sources with an emission

rate of one gram per second; results may be scaled by the rates (in grams per second) that would be modeled for each pollutant. If emission characteristics vary for different pollutants, or the pollutants do not vary proportionately from each egress point, then a separate modeling analysis for each pollutant is necessary.

Question 11. What meteorological input is required or recommended for dispersion modeling?

Meteorological input data for dispersion models may come from observations from a nearby NWS station, a comparable station, or on-site monitors; or they may be processed from prognostic data. AERMET must be used to preprocess the data for input into AERMOD. When processing prognostic meteorological data for AERMOD, the MMIF program should be used to process data for input to AERMET. In most cases, AERMINUTE should be used to process the data for input into AERMET.

Ohio EPA maintains recent five-year NWS data sets preprocessed in AERMET with local surface characteristics and upper air data to generate the surface (.sfc) and profile (.pfl) input files for AERMOD. In most cases, these files are the default option for dispersion modeling. Refer to Table 1 of this guidance for county-specific data sets.

On-site data may be an alternative when it is available or when NWS data is determined not representative. Five-years of NWS data is acceptable for screening purposes in such cases, e.g., for complex wind environments. At least one year of on-site data is required when used in refined modeling and should occur in consultation with Ohio EPA.

When neither representative NWS nor comparable meteorological station data are available, and Ohio EPA finds it prohibitive or infeasible to collect representative site-specific data, three years of prognostic meteorological data may be evaluated for representativeness in consultation with Ohio EPA.

When using standard NWS data, site-specific data without turbulence parameters, or prognostic data, the ADJ_U* option in AERMET is a regulatory default option. The preprocessed NWS data sets maintained by Ohio EPA are available with and without this option.

Ohio EPA accepts NWS data for all state-only modeling; evaluating representativeness for other regulatory applications is more prescribed. It is important when preparing to model, especially for major PSD or nonattainment sources, that a protocol is developed and approved to assure representativeness and acceptability.

Question 12. What receptor grids should I use?

Receptor grids specify coordinates where a model estimates downwind concentrations in ambient air, where ambient air means that portion of the atmosphere, external to buildings, to which the general public has access.

Receptor grids must be sufficiently dense to identify maximum ambient impacts. Receptor density should be higher in areas of special concern, e.g., areas of source interactions or significant terrain features. For most applications, receptor intervals should be no greater than 50 meters at fence lines...
and “hotspots” as determined from preliminary modeling results.

In general, receptors are not required within a secured property line, defined as a boundary that prevents general public access to property owned by a facility. Facilities without a distinct fence line or other secured boundary may apply a 25-meter buffer between receptors and structures with stacks. Receptors should extend from property boundaries to a distance sufficient to assure inclusion of maximum concentrations and coverage of the impact area\(^{20}\).

Regulatory default for both AERMOD and AERSCREEN require terrain elevation data, which is necessary for determining receptor elevations. Receptor elevations are required in modeling, and any exception to the default option would be made on a case-by-case basis in consultation with Ohio EPA. The AERMOD Implementation Guide\(^ {21}\) discusses case examples where the default option may not be suitable.

AERMOD receptor grids must be exclusively developed using the AERMAP terrain preprocessor. While AERMAP can process both DEM and NED data, NED data is preferred because it is actively updated and quality-assured. NED files for source and receptor locations, elevations, and height scales can be downloaded at the USGS website\(^ {22}\) with selection of a maximum one arc second (30-meter resolution) data set. In some circumstances, a 1/3 arc second (10-meter resolution) data set may be necessary and would be determined in consultation with Ohio EPA or through a modeling protocol development.

Question 13. Which averaging times should I use?

Modeled averaging times should be consistent with the standard. Users may select averaging times for calculation in AERMOD and AERSCREEN. If using Screen3 for state-only modeling, conversion factors\(^ {23}\) should be applied to output for averaging times other than 1-hour. Table 3 in this guidance is organized according to standards and averaging times relative.

Question 14. Is building downwash required for state-only modeling?

Yes, stack source files must include building dimension data, and the ‘include downwash’ option must be selected in model execution for both screening and refined models. GEP is measured from ground-level elevation at the base of the stack and is determined by evaluating all nearby structures using the following formula:

\[
GEP = H + 1.5L, \text{ where}
\]

- \(H\) = height of nearby structure measured from ground-level elevation at stack base, and
- \(L\) = lesser dimension of height or projected width of nearby structure.

A structure is considered “nearby” if it is within five times the lesser dimension of its height or projected width. GEP is taken as the greatest height calculated from all nearby structures.

\(^{20}\) A project’s impact area includes the most distant location where air quality modeling predicts a significant ambient impact will occur or a distance out to 50 km, whichever is lesser. More information on significant impact areas is found in Question 9.

\(^{22}\) USGS. *The National Map*. https://nationalmap.gov/elevation.html

\(^{23}\) SCREEN3 conversion factors discussed in Question 2 of this guidance.
AERMOD accepts direction-specific building dimension inputs for 36 ten-degree wind sectors to evaluate effects of structures for varying wind directions and determine GEP. While facility plot plans may be referenced for manually determining dominant structures for each sector for each stack, US EPA has developed a PC-based preprocessing tool\(^{24}\) that will produce AERMOD ready inputs for point source emissions. If direction-specific building dimensions are not calculated, the most conservative dimensions should be used for all directions, which are usually associated with height and diagonal width of the tallest nearby structure.

Building dimensions are not contained in state or federal emissions databases and must be obtained from facility personnel when sources at that facility are subject to building downwash. Distant background sources may be modeled without downwash with Ohio EPA approval since this generally maximizes those sources' impact in the study area and would, therefore, be conservative.

Question 15. How do I determine whether to apply urban or rural dispersion coefficients?

Dispersion coefficients are determined by analyzing land use or population within the total area, \(A_0\), of a circle with radius 3 km from the source, as outlined in Section 7.2.1.1 of the Guideline. A summary of the methods are provided in the table on the following page.

Of the two methods, Ohio EPA prefers the land use approach and cautions use of the population density approach without prior discussion. The population density approach should generally not be applied in highly industrialized areas with low population density, where the area is built-up sufficiently to warrant an urban dispersion coefficient. Analyses of whole urban complexes should be modeled with an urban dispersion coefficient if most sources are located in urban classifications for consistency with regional urban heat island effects.

Sources located within an urban area near a large body of water may warrant a rural dispersion coefficient, though not always. Similarly, plume heights from tall stacks in or near small urban areas may extend above the urban boundary layer such that a rural coefficient would be appropriate. Ohio EPA will review such scenarios case-by-case.

Many counties in Ohio have had SIP development modeling performed that included sources across the region. When performing modeling over a wide area as part of a PSD or NAAQS analysis, consult the Central Office to ensure a consistent approach to historic classifications.

1) If applying the **land use method**, classify land use within A_0 using the Auer land scheme25; if the total land use of types I1, I2, C1, R2, and R3 (summarized in table below) account for at least 50% of A_0, an urban coefficient is appropriate.

<table>
<thead>
<tr>
<th>Type</th>
<th>Use and structure</th>
<th>Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Heavy industrial: major chemical, steel and fabrication industries; generally 3-5 story buildings, flat roof</td>
<td>Grass and tree growth extremely rare; <5% vegetation</td>
</tr>
<tr>
<td>I2</td>
<td>Light-moderate industrial: Rail yards, truck depots, warehouses, industrial parks, minor fabrications; generally 1-3 story buildings, flat roofs</td>
<td>Very limited grass, trees almost total absent; <5% vegetation</td>
</tr>
<tr>
<td>C1</td>
<td>Commercial: Office and apartment buildings, hotels; >10 story heights, flat roofs</td>
<td>Limited grass and trees; <15% vegetation</td>
</tr>
<tr>
<td>R2</td>
<td>Compact residential: Single, some multiple, family dwelling with close spacing; generally <2 story, pitched roof structures; garages (via alley), no driveways</td>
<td>Limited lawn sizes and shade trees; <30% vegetation</td>
</tr>
<tr>
<td>R3</td>
<td>Compact residential: Old multi-family dwellings with close (<2 m) lateral separation; generally 2 story, flat roof structures; garages (via alley) and ashpits, no driveways</td>
<td>Limited lawn sizes old established shade trees; < 35% vegetation</td>
</tr>
</tbody>
</table>

2) If applying the **population density method**, compute the average population density, \bar{p}, per square kilometer within A_0; if \bar{p} is at least 750 people per square kilometer, an urban coefficient is appropriate.

Question 16. How do I obtain background values for NAAQS cumulative impact analyses in Ohio?

When conducting NAAQS cumulative impact analyses, background concentrations account for natural sources, unidentified sources, and regional transport contributions from distant sources, all of which are not practicable to include in a modeling analysis. Ambient contributions from these sources are accounted for through addition of monitoring data to modeling results. Section 8.3 in the Guideline covers background concentrations in more detail.

Each NAAQS pollutant and averaging time requires a separate background value. Actual monitored data from a representative monitoring site(s) for the most recent year is the starting point for acceptable background values. For completeness without double-counting, the monitor should not be impacted by modeled major sources or minor local sources.

When an un-impacted monitor is available, the annual average is representative for annual background values, and the second highest value for each averaging time is representative for short-term values. For lead, a three-month rolling average is representative.

When an un-impacted monitor is not available, values from impacted monitors with un-impacted sectors, *i.e.*, sectors with no upwind sources, can be used to develop background values. Monitored values measured inside a 90-degree sector upwind from potentially impacting source(s) would represent an un-impacted sector. For 24-hour averaging times, no more than two hours should have winds from the impacting sectors to be considered an un-impacted sector; for 3-hour averaging times, no winds should be from the impacting sectors. The second highest un-impacted value would be representative for short-term backgrounds, and the average of the un-impacted values would be representative for long-term backgrounds. Unadjusted impacted monitor values are sufficient for a conservative background.

Contact Ohio EPA for a representative background for your project. Background values must be approved in a project’s modeling protocol; alternative values\(^{26}\) may be proposed for approval.

Thresholds and limits

Question 17. What are Ohio significant emission rates which trigger modeling?

Allowable emissions increases are compared to Ohio EPA significant emission rates, defined in rule OAC 3745-31-01(VVVVV)(1). Table 3 in this guidance has been constructed to provide a comprehensive list of emission rates that trigger state and federal modeling requirements.

Question 18. Can a modification trigger a modeling requirement without an emission rate increase?

Provisions for OAC 3745-31-01(SSS)(1)(b) were promulgated to ensure ambient air quality standards are protected. Concentrations in this rule are trigger concentrations, not maximum allowable impacts. When there is a physical change in or a change in the method of operation of a significant contaminant source project that would not otherwise require a PTI or PTIO, any modification\(^{27}\) that would result in an incremental impact exceeding any concentration threshold at any receptor would require a PTI, regardless of whether the modification results in a change in total emissions.

If the provision is triggered, further modeling would be required to ensure the modification does not cause or contribute to violations of ambient air quality standards or allowable increments, and BAT is not required. This provision is not required under federal regulation and has not been submitted to U.S. EPA for approval as part of the SIP.

For example, a scrubber proposed for installation at a coal-fired boiler may not result in any actual or allowable emissions increase of NO\(_x\), but a resulting reduction in stack temperature and velocity may

\(^{26}\) Ohio EPA recommends following U.S. EPA’s March 1, 2011 memo: Additional clarification regarding application of Appendix W modeling guidance for the 1-hour NO\(_2\) ambient air quality standards.

\(^{27}\) as defined in rule OAC 3745-31-01(SSS)
cause an increase of ambient concentration at a receptor. If this increase in concentration equals or exceeds the concentration in the rule, a PTI would be required before beginning construction. Stack height reductions are also subject to such scenarios. A screening or refined model may be used; the determining factor will be the maximum concentration increase anywhere on the receptor grid for the corresponding contaminant and averaging period.

Question 19. What are Ohio’s GAll?

Ohio’s GAll reflect Ohio EPA’s policy on air toxics and policy to apply a limitation of one-half the available PSD increment for new sources and modifications, as defined in OAC 3745-31-11. Table 3 in this guidance provides a comprehensive list of federal and state standards, rates, increments, and Ohio’s GAll. Ohio EPA reserves the right to request modeling that falls below the GAll thresholds if the Director expresses concern that project emissions may cause or contribute to an exceedance.

Question 20. What if modeling estimates consumption of more than one-half of available PSD increment?

It is Ohio EPA’s policy to apply a limitation of one-half of the available PSD increment for new sources and modifications. The intent of Ohio EPA’s policy is to encourage future growth by preventing any single emissions increase from exclusively consuming the available increment. Non-PSD sources consume increment and increase background concentrations and could threaten future growth. As such, it is Ohio EPA’s practice that any new source or modification, PSD or otherwise, will not consume more than one-half of the available PSD increment. For criteria pollutants which do not have identified PSD increments, maximum incremental impact of new source emissions is limited to one quarter of the NAAQS.

Ohio EPA may grant exceptions to this policy on a case-by-case basis when modeling predicts exceedances of one-half but less than 83 percent of the available increment, provided public health will not be adversely affected. The following are examples of where exceptions may be granted:

1) The exceedance occurs in a localized area near the source, and it is unlikely future nearby sources will significantly impact the same area, such as may occur with a fugitive source having low release points and proximal maximum impact areas that Ohio EPA judges would not be affected by other facilities;
2) A source is located where Ohio EPA judges other major sources would not be likely to locate, such as a remote rural area;
3) A source is temporary, and the increment consumed will become available in the near future, such as a clean-up site slated to operate for a year or two; or
4) A source is located in a “brownfield” area that would otherwise locate in a greenfield site.

Question 21. Do I include minor or exempt sources for a project exceeding SER thresholds?

All sources or units contained in permits that make up a project are initially considered significant with respect to the potential impact due to the project. Many small sources, while individually insignificant, could combine to cause or contribute to an ambient problem. Smaller sources can be removed from
the modeling analysis if it can be demonstrated that their emissions are insignificant relative to the rest of the project. Sources not included in the modeling must be agreed upon in a modeling protocol before they can be eliminated from the modeling.

Question 22. Are there exceptions to modeling thresholds?

There are several new source emissions scenarios which Ohio EPA has historically not reviewed for state-only permits. These scenarios generally involve fugitive emissions from parking lots, roadways, material handling and storage piles. These scenarios usually represent situations where modeling results often indicate potential problems due to unreliable emission factors and/or unusual or extreme source configurations. Field experience with these sources, though, indicates that normal operating practices and compliance with required controls result in acceptable ambient impacts as demonstrated by ambient monitoring, field measurements of visible emissions, or a lack of verified complaints by local citizens.

In accordance with division (F)(4)(f) of ORC section 3704.03, which specifies source type exemptions from air toxics modeling, the following sources/pollutants are not required in air quality modeling for state-only permits unless factors such as source size, tons of emissions, particle size, pre-existing concerns or proximity to other sources or citizen populations indicate that a modeling review is warranted: parking lots; storage piles; storage tanks; transfer operations; grain silos; grain dryers; emergency generators; gasoline dispensing operations; sources emitting air contaminants solely from the combustion of fossil fuels; or emissions of wood dust, sand, glass dust, coal dust, silica, and grain dust.

Sources subject to a MACT or residual risk standard under section 112 of the CAA or identified in 40 CFR 51.166(b)(23) where BACT or LAER has been required that would restrict the amount of that pollutant that could be released are not subject to air toxics modeling unless factors such as source size, tons of emissions, particle size, pre-existing concerns or proximity to other sources or citizen populations indicate that a modeling review is warranted.

Pollutant-specific

Question 23. How do I estimate impact from secondary pollutants: ozone and PM$_{2.5}$?

Whereas AERMOD does not account for chemical coupling, pollutant transformations, and atmospheric chemistry, there is no preferred modeling system or technique in the Guideline for estimating impact of ozone or secondary PM$_{2.5}$ formation. Table 3 in this guidance provides SERs for pollutants critical to formation of ozone (VOC, NO$_x$) and PM$_{2.5}$ (SO$_2$, NO$_x$). A demonstration is necessary when any of these pollutants exceed the respective SERs. U.S. EPA recommends a two-

28 Exemptions apply to criteria pollutants as well.

29 Division (F)(4)(f)(ii) of section 3704.03 of Ohio Revised Code enables the director’s request of additional information from a source for the purposes of air toxic contaminant modeling if there is reason to believe the source will potentially cause an increase in ground level concentration exceeding the MAGLC beyond the facility’s boundary.

30 Emissions of wood dust, sand, glass dust, coal dust, silica, and grain dust should be included for PM modeling.
tiered approach to demonstrations, where most applicants should receive a determination based on the first tier.

Because impact depends on the nature of the source, its emissions and background environment, evaluating a source’s significance based on technical information in combination with other supportive information and analysis as a first-tier analysis may be a sufficient demonstration. U.S. EPA has prepared draft guidance\(^3\) on one approach to a tier 1 analysis, which should yield credible and appropriate relationships between emissions and impacts developed from previous modeling. Table 3 provides Class II SILs, which Ohio EPA applies to determine significant impact. Ohio EPA will make a determination of sufficiency and will consult with the owner/operator regarding additional analyses, if necessary.

U.S. EPA has provided guidance\(^4\) on chemical transport modeling for use in tier 2 analyses. The methods presented are significantly more resource-intensive than methods under tier 1 analyses. Current U.S. EPA guidance indicates that photochemical grid modeling will only be required for the largest sources. Do not initiate this type of analysis without consulting air modeling staff at DAPC.

Specific to PM\(_{2.5}\), direct emissions may be evaluated using standard approaches, e.g. AERSCREEN and AERMOD, and impacts must be combined with secondary contributions for a complete demonstration.

Question 24. Are there special modeling requirements for NO\(_2\)?

Because NO co-emitted with NO\(_2\) may react with ambient ozone to increase NO\(_2\) concentrations downwind, a multi-tiered approach is used to address the chemical environment of the plume. The approach is considered a screening technique where each tier increases in complexity and, therefore, data input requirements while decreasing in conservatism.

The Guideline has incorporated a three-tiered screening approach for both annual and 1-hour averaging times for NO\(_2\) as follows, using AERMOD or another appropriate refined model:

Tier 1: Assume total conversion of NO to NO\(_2\).

Tier 2: Multiply Tier 1 results by the appropriate ambient ratio. ARM2 is now a default regulatory option in AERMOD for this purpose, which uses a national minimum ambient NO\(_2\)/NO\(_x\) ratio of 0.5 and a maximum of 0.9. Use of an alternative minimum ratio must be in consultation with Ohio EPA.

Tier 3: Either method, OLM or PVMRM, may be used on a case-by-case basis. Both methods require specification of an ISR of NO\(_2\)/NO\(_x\)\(^3\). While this tier no longer requires approval as an alternative model, its application must occur in consultation with both Ohio EPA and the EPA Regional Office.

\(^3\) U.S. EPA. (2016). DRAFT Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone and PM\(_{2.5}\) under the PSD permitting Program. EPA-454/R-16-006.

\(^3\) An ISR database and details on its use can be found here: https://www3.epa.gov/scram001/no2_isr_database.htm
Because this is a screening approach, additional scrutiny is required if proposing negative emission rates in NO$_2$ modeling and so must occur in consultation with Ohio EPA. Additional information can be found in a technical support document34 and clarification memoranda35,36,37 from U.S. EPA.

Question 25. Do I need to model Greenhouse Gases?

Ohio EPA does not conduct reviews of modeling for Greenhouse Gases.

Air toxics

Question 26. Do I need to model air toxics sources?

Ohio EPA regulates toxic air contaminants under OAC 3745-114. DAPC has an engineering guide4 to address common questions associated with air toxic analysis. All air toxics emissions exceeding significant emission rates identified in Table 3 must be modeled. There are exemptions described in Question 22 in this guide and the air toxic analysis engineering guide. Some compounds are considered “highly toxic” and may require modeling at rates less than that identified in Table 3.

When modeling is required, the modeled rate is the maximum hourly emission rate. Maximum modeled concentrations are screened against the MAGLC for each pollutant, which is calculated according to procedures in “Option A – Review of New Sources of Air Toxic Emissions,” available in DAPC Engineering Guide 704. The Director may use discretion to accept alternative values in calculating the MAGLC for some pollutants. Alternative values for formaldehyde emissions and further guidance on alternative values are provided in Engineering Guide 70.

Most routine releases will have similar density to air from dilution; nonetheless, screening evaluations of sources emitting 'light' or 'heavy' plumes may use a toxic release model that includes algorithms for density, such as TSCREEN38,39.

Question 27. Should air toxics sources be modeled if there is no Time Weighted Average?

Yes, pollutants without a listed TWA are addressed by multiplying the Ceiling Limit Value by 0.737 and following procedures in “Option A - Review of New Sources of Air Toxic Emissions,” available in DAPC Engineering Guide 704, to develop a MAGLC.

34 U.S. EPA. (July 2015). Technical support document (TSD) for NO2-related AERMOD modifications. EPA-454/B-15-004
37 U.S. EPA. (September 30, 2014). Clarification on the use of AERMOD dispersion modeling for demonstrating compliance with the NO2 National Ambient Air Quality Standard.
Question 28. What special requirements exist for sources of fluoride?

Because atmospheric deposition of fluoride may lead to damage of plants and property at concentrations less than the MAGLC, Ohio EPA has established a secondary target of 0.5 µg/m³ with a 30-day averaging time. Monthly averaging times can be computed directly in AERMOD. While AERSCREEN computes a suite of averaging times, it does not offer an option for monthly. Monthly averaging times from AERSCREEN are derived by applying a conversion factor of 0.18 to the maximum 1-hour concentration modeled. Use the same approach to convert SCREEN3 (state-only) results.

Nonstandard sources

Question 29. Is there any special guidance for nonstandard point source emissions?

Nonstandard source emissions are not specifically addressed in screening or refined models. For example, if emissions do not exit the stack in an upward (vertical) direction, alternative characterizations of the source should be developed to more accurately represent the release point. If the temperature of the release is near ambient, a characterization as an area or volume source might be appropriate. If temperature is significant, a virtual stack might be created to represent the emission point. Alternative characterizations should be discussed with Ohio EPA prior to modeling.

Question 30. Are fugitive emissions modeled?

Major new source PSD and NAA NSR require modeling of all significant sources, including fugitive sources such as storage piles and roadways. U.S. EPA’s guidance on haul roads⁴⁰ may be helpful for modeling haul road fugitive emissions.

Minor source state permits require modeling of boiler or process source criteria and emissions increases (both controlled and fugitive) of air toxics⁴¹. It is not required to model non-process fugitive sources such as roadways, parking lots, or material storage and transfer operations for state-only modeling. Grinding, crushing, mixing, and screening operations are considered processes and should be modeled. An evaluation of all project emissions may be required in a state analysis if circumstances warrant.

Question 31. How do I model rain caps and horizontal releases?

Regulatory modeling of horizontal releases and rain caps has followed procedures based on a U.S. EPA MCH Memorandum dated July 9, 1993. Methods built on this approach were available as BETA options in AERMOD, requiring MCH approval. Beginning with version 16216, AERMOD now has regulatory options for modeling capped and horizontal stacks, using the POINTCAP and POINTHOR source types, respectively, with input of actual stack conditions. The options have been adjusted to account for the

⁴¹ More information on these exemptions is found in the Air toxics of this guide.
PRIME algorithm for sources subject to building downwash in concurrence with U.S. EPA Guideline on Air Quality Models42.

Question 32. How do I account for a building with a pitched roof or multiple tiers?

Pitched roofs present a nonstandard modeling scenario where horizontal dimensions are reduced to a line at the roof peak. There are two approaches to modeling a pitched roof as a 3-dimensional structure using standard modeling techniques:

1) Assume horizontal dimensions are covered by a flat roof where the footprint of the building is unchanged but the height is adjusted to the height of the pitch; or
2) assume a building height at an elevation that is at one half the height of the pitched roof where the building width is modified to correspond with the dimension of the roof at that height.

Buildings with multiple tiers can be viewed as independent, stacked structures as long as heights used are identical to building height at the location of that tier. For example, a flat-roofed building with a single tower may be represented as a single flat-roofed structure with tower stacked on top with base elevation that is the height of the flat structure.

Question 33. How do I model flares?

Flares are nonstandard point sources characterized by significant radiative heat loss that reduces heat available for plume rise. In addition to this heat loss, entrainment of excess air increases the volume of gas and lowers its temperature. As a result, combusted gas temperature at the tip of a visible flame falls around 1200 to 1800 °F. Thus, a flare may be modeled as a point source where plume rise is calculated from flame tip rather than actual stack exit height using an effective stack exit diameter calculated from Briggs’ equations for bent-over, hot buoyant plumes43. This is the method employed with the flare option in both AERSCREEN and SCREEN3 (for state-only permitting), which are acceptable for screening purposes. For refined modeling, users may apply this method by following some simple calculations based on stack parameters and assumptions provided below.

AERSCREEN (and SCREEN3)

Users are prompted to input the following (metric only in SCREEN3):

1) Actual emission rate (lb/h or g/s)
2) Actual flare stack height (feet or meters)
3) Total heat release rate (cal/sec)

The total heat release rate is calculated by multiplying the heating value of the flare gas by the actual gas flow rate. Both tools default to a radiative heat loss fraction44,45 of 0.55, which reduces the total heat release rate to a sensible heat content remaining for plume buoyancy. Though AERSCREEN allows

a user-defined input for the heat loss fraction, use of other values should be in consultation with Ohio EPA. Other parameters, i.e., stack exit temperature and velocity, ambient temperature, are defaulted in the model to determine effective stack height and diameter for calculating ground level concentrations at receptor sites. Details about the calculation and default parameters the tools employ can be found below in the refined modeling section.

AERMOD (or other refined modeling tool)

No flare option is available in AERMOD, but a flare may be modeled as a point source, which requires input for stack height, diameter, temperature, and exit velocity. For flares, temperature is assumed 1273 K, and velocity is assumed 20 m/s. An effective diameter and height must be calculated employing these and other assumptions, described in this section. The Briggs equations for bent-over, hot buoyant plumes\(^{43}\) derives a “buoyancy flux parameter” written in the following equivalent forms:

\[
F_b = \frac{g v_s d^2}{4} \left(\frac{T_s - T_a}{T_s} \right) = \frac{g Q_s}{\pi \rho_a c_{pa} T_a}
\]

where

- \(F_b (m^4/s^3) = \) buoyancy flux parameter
- \(g (m/s^2) = \) gravitational acceleration
- \(v_s (m/s) = \) stack exit velocity
- \(d (m) = \) stack exit diameter
- \(T_s (K) = \) stack exit temperature
- \(T_a (K) = \) stack exit temperature
- \(\rho_a (g/m^3) = \) ambient air temperature
- \(\rho_a (g/m^3) = \) ambient air density
- \(c_{pa} (cal/g*K) = \) specific heat of ambient air
- \(Q_s (cal/sec) = \) stack sensible heat emission

For flares, \(Q_s = Q_t (1 - f_{hl})\), where \(f_{hl}\) is the radiative heat lost fraction\(^{44,45}\) and \(Q_t\) is the total flared gas heat release rate calculated by multiplying the heating value of the flare gas by the actual gas flow rate. Ohio EPA recommends using a radiative heat loss fraction of 0.55 and requires justification for use of other values. The following values are given or assumed for flares:

\[
\begin{align*}
g (m/s^2) & = 9.807 \\
v_s (m/s) & = 20 \\
T_s (K) & = 1273 \\
T_a (K) & = 293 \\
\rho_a (g/m^3) & = 1205 \\
c_{pa} (cal/g*K) & = 0.24
\end{align*}
\]
Solving the Briggs equation with the above inputs, we arrive at the following results depending on the unit of the heat release rate; the second form assumes $f_{hl} = 0.55$:

\[
F_b (m^4/s^3) = 3.68 \times 10^{-5} Q_t = 1.66 \times 10^{-5} Q_s, \quad \text{for } Q(\text{cal/s})
\]
\[
F_b (m^4/s^3) = 2.58 \times 10^{-6} Q_t = 1.16 \times 10^{-6} Q_s, \quad \text{for } Q(\text{Btu/h})
\]
\[
F_b (m^4/s^3) = 2.58 Q_t = 1.16 Q_s, \quad \text{for } Q(\text{MMBtu/h})
\]
\[
F_b (m^4/s^3) = 8.80 Q_t = 3.96 Q_s, \quad \text{for } Q(\text{MW})
\]

The Briggs equation can be solved for an effective diameter, d_{eff}, by substituting one of the above sets of values for the buoyancy flux parameter, F_b, in terms of heat release rate, Q:

\[
d_{eff} = \sqrt[4]{\frac{4}{g v_s} \left(\frac{T_s}{T_s - T_a} \right) F_b}
\]

To determine an effective stack height for dispersion modeling, an empirical equation\(^ {43,46}\) is employed with an assumption of flame tilt at 45° to calculate the height of the flame, h_f:

\[
h_f = (\sin 45^\circ) \times 0.006 Q_t^{0.478} = 0.0042 Q_t^{0.478}, \quad \text{for } Q(\text{Btu/h}) ; h(ft)
\]

The effective stack height, h_s, is found by adding the flame length to actual stack height, h_s.

\[
h_{eff} = h_s + h_f
\]

Therefore, Ohio EPA recommends the following inputs for modeling a flare as a point source in AERMOD:

Exit velocity: $v_s (m/s) = 20$

Exit temperature: $T_s (K) = 1273$

Effective stack diameter (m), calculated (assuming heat loss fraction $f_{hl} = 0.55$ for Q_s):

\[
d_{eff} (m) = 9.88 \times 10^{-4} Q_t = 6.63 \times 10^{-4} Q_s, \quad \text{for } Q(\text{cal/s})
\]
\[
d_{eff} (m) = 2.61 \times 10^{-4} Q_t = 1.75 \times 10^{-4} Q_s, \quad \text{for } Q(\text{Btu/h})
\]
\[
d_{eff} (m) = 2.61 \times 10^{-1} Q_t = 1.75 \times 10^{-1} Q_s, \quad \text{for } Q(\text{MMBtu/h})
\]
\[
d_{eff} (m) = 4.83 \times 10^{-1} Q_t = 3.24 \times 10^{-1} Q_s, \quad \text{for } Q(\text{MW})
\]

Effective stack height (m), calculated:

\[
h_{eff} = h_s + 4.56 \times 10^{-3} Q_t^{0.478}, \quad \text{for } Q(\text{cal/s})
\]
\[
h_{eff} = h_s + 1.28 \times 10^{-3} Q_t^{0.478}, \quad \text{for } Q(\text{Btu/h})
\]
\[
h_{eff} = h_s + 9.45 \times 10^{-1} Q_t^{0.478}, \quad \text{for } Q(\text{MMBtu/h})
\]
\[
h_{eff} = h_s + 1.70 Q_t^{0.478}, \quad \text{for } Q(\text{MW})
\]

This method may not apply to every situation. Applicants may submit an alternative method with documentation for consideration in a modeling protocol. The references cited here may be helpful in such a case.

\(^{46}\) API standard 521. (1969). Pressure-relieving and depressuring systems. Note: units of Btu/h and feet are used in the empirical equation construction in this source. Inputs in this guide take into account conversions to meters and other heating values.
Question 34. How do I model combustion turbines?

Combustion turbines (CTs) operate variably at full loads or partial loads at steady-state or in start-up and shut-down modes. Stack temperatures, emission rates, and exit velocities will vary with operating scenarios and ambient conditions of temperature, pressure, and humidity. CTs should be evaluated to determine worst-case operating scenarios by screening impacts at multiple loads, e.g., 50%, 75%, and 100% of design capacity, and sufficient meteorology for a range of ambient conditions. Three approaches are described below for modeling CTs in a PSD application. (The same approaches can be followed for state-only modeling for meeting Ohio’s GAII.)

Approach 1: Screen each scenario using AERSCREEN. The demonstration is considered complete if the maximum concentration for every variation is considered insignificant. Otherwise, carry forward the worst-case scenario, or scenarios when no single worst case is clear, throughout the analysis using AERMOD.

Approach 2: Model each scenario in AERMOD with the most recent complete year of meteorology to identify the worst-case scenario. Model this scenario, or scenarios when no single worst-case is clear, using AERMOD with five years of meteorology. If any impact is not considered insignificant, carry this case(s) forward throughout the analysis.

Approach 3: Construct a virtual worst-case scenario by combining the greatest emission rates with most impacting stack parameters from all scenarios, and use this construction throughout the analysis using AERMOD.

Question 35. How do I model sources in a building without identified vents to the outside?

Sources can be located within an enclosure or building with no obvious control and/or vent moving the emissions to the outside. It must be assumed that all emissions coming from the device are either captured and controlled or escaping to ambient air. If they are not being captured and controlled where cleaned air is reintroduced to the work area, the emissions must be escaping the building, and the modeler must determine how the emissions are escaping the building or enclosure to ambient air. The emission rate leaving the building or enclosure is assumed the same as the emission rate from the source(s). Any credit for some portion of the emissions being retained in the building due to “building capture” must be supported and will be evaluated on a case-by-case basis.

Often emissions are removed by the building ventilation system. Sometimes, exchange with outdoor air occurs through open doors and windows. In any event, the modeler must identify the egress point(s) and characterize releases as a modeling release scenario – point, area, or volume. If best engineering judgment justifies assigning a fraction of the total emissions through specific egress points, these points can be modeled with their assigned emission rates. When using a single source screening model, the modeled peaks are then added together. The worst-case egress point must be assumed if it is unclear through which potential egress point the emissions are actually venting. If unclear which

47 Guideline Section 8.2.2(d) require establishing load or operating condition for point sources that causes maximum ground-level concentrations.

48 See Question 5 on screening models for more than one source.
egress point is worst-case, each scenario should be modeled with highest results compared to the applicable standard.

Question 36. Do emissions from start-ups and shut-downs require modeling?

Whereas the Guideline requires consideration of changes in operating conditions that affect emissions, start-ups and shut-downs may require modeling if their emission rates are greater than steady-state rates or if operating conditions may cause higher ground-level concentrations. In such cases, consult with Ohio EPA for a case-by-case determination.

Question 37. Do I model intermittent sources?

Intermittent sources are emission units that operate for short periods of time for testing and maintenance purposes and are present at a facility for emergency situations or are otherwise random and unscheduled. Examples include emergency generators and fire pumps. Start-up and shut-down operations may be considered intermittent, depending on permit conditions. Although not strictly defined by operating hours, intermittent sources are typically permitted for 500 hours of operation or less annually to include routine testing, maintenance, and operation in emergencies or scenarios that meet criteria for intermittent designation. Sources with set operating schedules are not considered intermittent by Ohio EPA and must be included in modeling analyses.

A proposed emission unit consistent with intermittent operation must be evaluated against long-term standards in the dispersion modeling analysis. The unit may otherwise be considered for exclusion of the short-term standards: 1-hour NO₂, 1-hour SO₂, and 24-hour PM₂.⁵. Exclusion from modeling analysis must be agreed upon in a modeling protocol.

Question 38. How do I model hot-mix asphalt plants?

New or modifying hot-mix asphalt plants seeking to utilize No. 4 fuel oil, No. 6 fuel oil, and/or on-spec used oil as a fuel source, and/or seeking to utilize slag aggregate as part of their raw material mix will be required to demonstrate via dispersion modeling that the 2010 1- SO₂ NAAQS is not threatened. DAPC staff have developed a three-step methodology for this demonstration, which can be found on the DAPC modeling website.

Submission to Ohio EPA

Question 39. When are modeling protocols required?

Modeling protocols are required for all Nonattainment NSR projects, PSD projects, and projects where non-default options are selected. Modeling protocols are not required for state-only modeling when all default options are selected, except for reasons stated elsewhere in this engineering guide. Ohio EPA recommends obtaining an approved protocol before advancing to final modeling where the model may be complex or unusual. Where protocols are required, they should be submitted to Ohio EPA for approval in advance of the final modeling submittal.

⁴⁹ Ohio EPA. "State Implementation Plan Section/Modeling." http://epa.ohio.gov/dapc/model/modeling
Question 40. What files need to be submitted to Ohio EPA for a modeling review?

The following files must be submitted to Ohio EPA for a complete modeling review submission, depending on the modeling platform:

AERMOD
1) Approved modeling protocol (when applicable)
2) All AERMOD input and output files, including BPIP/PRIME files
3) All downwash files
4) All AERMAP output files
5) Modeling report\(^{50}\)
 When using meteorological data not supplied by Ohio EPA, you must also include:
6) All AERMET input and output files
7) All AERSURFACE input and output files

AERSCREEN
1) AERSCREEN input file
2) All terrain files, including “demlist.txt” and DEM or NAD files
3) BPIPPRM input file
4) Discrete receptor file, if used
5) External surface characteristics file, if used
6) AERSCREEN output file

SCREEN3
The output file is sufficient for Ohio EPA to review SCREEN3 modeling.

\(^{50}\) More details on the components of a modeling report are available in Appendix B of this guide.
Appendix A. AERSCREEN Model Application Guidance

AERSCREEN is EPA’s recommended screening model for most applications in all types of terrain and for applications involving building downwash. Through a command-prompt interface, AERSCREEN utilizes the MAKEMET meteorological data generator – a standalone program that generates a matrix of meteorological conditions by looping through a range of wind speeds, cloud covers, ambient temperatures, solar elevation angles, and convective velocity scales for user-specified surface characteristics. The model interfaces with AERMAP and BPIPPRM to process terrain and building information, respectively. AERSCREEN then invokes AERMOD in a screening mode.

By supplying a command-prompt interface to access these tools, AERSCREEN eliminates the need for securing site-specific meteorological data unless necessary and automates much of the processing for users to produce worst-case 1-hour concentration estimates, including conversions to worst-case 3-hour, 8-hour, 24-hour, and annual concentration estimates. AERMOD guidance, where applicable, will also apply to AERSCREEN modeling. More details about the program are in the AERSCREEN user guide. Please refer to Question 40 in this guide for what files to submit when using AERSCREEN in a modeling analysis for Ohio EPA.

AERSCREEN Input

AERSCREEN allows the user to load and edit a previous run by calling a restart file, which must be named AERSCREEN.INP and be located in the same directory as the executable file. When this file is not present, AERSCREEN will prompt the user for a run title, which will appear at the head of the output file and will be the reference title in the AERSCREEN.INP file generated. The user will then be prompted for project information, beginning with units (metric or English) and source type. After additional prompts about the source, dispersion, and NO₂ chemistry, AERSCREEN prompts for input about downwash, terrain, and meteorology. Below is a summary of the AERSCREEN prompts, which are described in detail in the user guide.

Source, dispersion, and NO₂ chemistry

The source options in AERSCREEN are identified below (input keystroke in quotes):

4) Point: “P” or “p”; release from a vertical stack or isolated vent
5) Capped stack: “S” or “s”; release from an obstructed stack
6) Horizontal stack: “H” or “h”; release from a horizontal stack
7) Flare: “F” or “f”; release from a stack flare
8) Volume: “V” or “v”; release from a variety of industrial sources (e.g., building roof monitors, multiple vents, conveyor belts)
9) Rectangular area: “A” or “a”; low or ground-level releases with no plume rise (e.g., storage piles, slag dumps, lagoons)
10) Circular area: “C” or “c”; low or ground-level releases from a source having a circular shape

52 AERSCREEN evaluates a single source; Question 5 in this guidance addresses screening multiple sources.
53 See Question 33 in this guide for details on modeling flares in AERSCREEN.
After selecting the source type, the user will be prompted to enter source parameters, which will vary depending on the source. The user then selects rural or urban land use classification and enters the minimum distance to ambient air. The user must then select an option for NO₂ chemistry.

Downwash and terrain

The user must select whether to include building downwash. If “y” is entered, the user must supply a pre-existing BPIPPRM file or input parameters for a single building: height, minimum and maximum horizontal dimensions, maximum building dimension angle to true North, direction of stack from building center and distance between building center and stack. Then, the user must select whether to include terrain heights, enter a maximum probing distance, and select options to include up to ten discrete receptors and a flagpole receptor height. The user will then enter a value for source elevation; if “y” was entered for including terrain heights, the user will have the option to use AERMAP-derived values and must enter latitude and longitude or UTM coordinate details for the source.

Meteorology

To generate the meteorological matrix, AERSCREEN requires input for minimum temperature, maximum temperature, minimum wind speed, anemometer height, and surface characteristics (albedo, Bowen ratio, and roughness length) for the project area. The user has the option to use AERMET seasonal tables or an external file for surface characteristics or may enter them directly.

After entering meteorological input, AERSCREEN will prompt for fumigation and debug options and ask for a file name to generate output. Before execution, the user may review and change any input in the same manner that is available when loading from an AERSCREEN.INP file.

<table>
<thead>
<tr>
<th>Description of Source</th>
<th>Initial Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Initial Lateral Dimensions (σ₀)</td>
<td></td>
</tr>
<tr>
<td>Single Volume Source</td>
<td>(σₙ₀ = \text{length of side divided by 4.3})</td>
</tr>
<tr>
<td>(b) Initial Vertical Dimensions (σ₂₀)</td>
<td></td>
</tr>
<tr>
<td>Surface-Based Source ((hₑ \sim 0))</td>
<td>(σ₂₀ = \text{vertical dimension of source divided by 2.15})</td>
</tr>
<tr>
<td>Elevated Source ((hₑ > 0)) on or Adjacent to a Building</td>
<td>(σ₂₀ = \text{building height divided by 2.15})</td>
</tr>
<tr>
<td>Elevated Source ((hₑ > 0)) not on or Adjacent to a Building</td>
<td>(σ₂₀ = \text{vertical dimension of source divided by 4.3})</td>
</tr>
</tbody>
</table>

54 Rural land use is default; user must provide urban population, if urban land use is selected.
55 If OLM or PVMMR is selected, the user must enter the ISR and a representative ozone background concentration.
56 For area and volume sources, downwash is defaulted to “no” and information is not requested.
57 For rectangular area sources, terrain is set to “no” and no information is requested.
Appendix B. Air Quality Modeling Report Guidelines

Modeling reports should present a narrative of all major components of the analyses performed, including modeled results in tabular form. An air quality modeling report is a part of the permit record. As such, it should provide sufficient detail for any reviewing agency or member of the general public to replicate all stages of the modeling demonstration. Providing a prescriptive list of all components of a modeling report is not feasible given the case-by-case nature of air quality modeling assessments. Ohio EPA recommends the following items that should be presented in any modeling report.

- **Project Description**
- **Model Selection**
 - Version
 - Land use analysis
 - Pollutants modeled
 - Table of project’s emission rates and comparison to Significant Emission Rates
- **Meteorological Data**
 - Identify surface and upper air stations
 - Identify years of met data used
 - Identify source of data, if not Ohio EPA
- **Receptor Grid**
 - Describe extent of receptor grid
 - Identify the resolution of the elevation data used
 - Describe the spacing of the fenceline receptors and the nested grids
- **Emissions and Release Parameters**
 - Table of pollutant emission rates for long and short-term modeling
 - Table of modeled release point parameters
 - Description of intermittent or emergency units
 - Description of sources with startup/shutdown emissions
 - Cross-reference table for model unit IDs and permit/application IDs
- **Significant Impact Analysis (PSD)**
 - Describe emission scenarios modeled
 - Table of modeled impacts compared to relevant SIL values
- **NAAQS Analysis (PSD)**
 - Describe emission scenarios modeled
 - Table of maximum modeled impacts compared to relevant NAAQS
 - Table of background values
 - Cause or contribute analysis, if needed
- **Increment Analysis**
 - Describe emission scenarios modeled
 - Table of maximum modeled impacts compared to relevant PSD and/or GAIIs increments
- **Air Toxics Analysis**
 - Inventory of air toxics modeled
 - Table of maximum modeled 1-hour concentrations, the associated MAGLCs, and a calculated ratio of modeled concentrations to MAGLCs
- **Additional Impact Analysis (PSD)**
 - Construction impacts
- Growth impacts
- Soil and vegetation impacts
- Visibility analysis (Class II)

- Class I Area Analysis (PSD)
 - Detail on distances to Class I areas
 - Q/D analysis
 - Description of any FLM actions and correspondence regarding project

- Figures and Maps
 - The narrative should be supplemented with aerial photos, topographic maps, and project site plans, which clearly indicate building locations, egress points, roadways, fencelines, and other pertinent information.
Appendix C. Reference Tables

1. NWS assignments

<table>
<thead>
<tr>
<th>County</th>
<th>Surface</th>
<th>Mixing height</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMS</td>
<td>Huntington</td>
<td>Wilmington</td>
</tr>
<tr>
<td>ALLEN</td>
<td>Dayton</td>
<td>Wilmington</td>
</tr>
<tr>
<td>ASHLAND</td>
<td>Akron</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>ASHTABULA</td>
<td>Erie</td>
<td>Buffalo</td>
</tr>
<tr>
<td>ATHENS</td>
<td>Parkersburg</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>AUGLAIZE</td>
<td>Dayton</td>
<td>Wilmington</td>
</tr>
<tr>
<td>BELMONT</td>
<td>Pittsburgh</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>BROWN</td>
<td>Cincinnati</td>
<td>Wilmington</td>
</tr>
<tr>
<td>BUTLER</td>
<td>Cincinnati</td>
<td>Wilmington</td>
</tr>
<tr>
<td>CARROLL</td>
<td>Pittsburgh</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>CHAMPAIGN</td>
<td>Dayton</td>
<td>Wilmington</td>
</tr>
<tr>
<td>CLARK</td>
<td>Dayton</td>
<td>Wilmington</td>
</tr>
<tr>
<td>CLERMONT</td>
<td>Cincinnati</td>
<td>Wilmington</td>
</tr>
<tr>
<td>CLINTON</td>
<td>Cincinnati</td>
<td>Wilmington</td>
</tr>
<tr>
<td>COLUMBIANA</td>
<td>Pittsburgh</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>COSHOCTON</td>
<td>Columbus</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>CRAWFORD</td>
<td>Columbus</td>
<td>Wilmington</td>
</tr>
<tr>
<td>CUYAHOGA</td>
<td>Cleveland</td>
<td>Buffalo</td>
</tr>
<tr>
<td>DARKE</td>
<td>Dayton</td>
<td>Wilmington</td>
</tr>
<tr>
<td>DEFIANCE</td>
<td>Fort Wayne</td>
<td>Detroit KDTX</td>
</tr>
<tr>
<td>DELAWARE</td>
<td>Columbus</td>
<td>Wilmington</td>
</tr>
<tr>
<td>ERIE</td>
<td>Cleveland</td>
<td>Buffalo</td>
</tr>
<tr>
<td>FAIRFIELD</td>
<td>Columbus</td>
<td>Wilmington</td>
</tr>
<tr>
<td>FAYETTE</td>
<td>Columbus</td>
<td>Wilmington</td>
</tr>
<tr>
<td>FRANKLIN</td>
<td>Columbus</td>
<td>Wilmington</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>County</th>
<th>Surface</th>
<th>Mixing height</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULTON</td>
<td>Toledo</td>
<td>Detroit KDTX</td>
</tr>
<tr>
<td>GALLIA</td>
<td>Huntington</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>GEauga</td>
<td>Cleveland</td>
<td>Buffalo</td>
</tr>
<tr>
<td>GREENE</td>
<td>Dayton</td>
<td>Wilmington</td>
</tr>
<tr>
<td>GUERNSEY</td>
<td>Pittsburgh</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>HAMILTON</td>
<td>Cincinnati</td>
<td>Wilmington</td>
</tr>
<tr>
<td>HANCOCK</td>
<td>Toledo</td>
<td>Wilmington</td>
</tr>
<tr>
<td>HARDIN</td>
<td>Dayton</td>
<td>Wilmington</td>
</tr>
<tr>
<td>HARRISON</td>
<td>Pittsburgh</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>HENRY</td>
<td>Toledo</td>
<td>Detroit KDTX</td>
</tr>
<tr>
<td>HIGHLAND</td>
<td>Cincinnati</td>
<td>Wilmington</td>
</tr>
<tr>
<td>HOCKING</td>
<td>Columbus</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>HOLMES</td>
<td>Akron</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>HURON</td>
<td>Cleveland</td>
<td>Buffalo</td>
</tr>
<tr>
<td>JACKSON</td>
<td>Huntington</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>JEFFERSON</td>
<td>Pittsburgh</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>KNOX</td>
<td>Columbus</td>
<td>Wilmington</td>
</tr>
<tr>
<td>LAKE</td>
<td>Cleveland</td>
<td>Buffalo</td>
</tr>
<tr>
<td>LAWRENCE</td>
<td>Huntington</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>LICKING</td>
<td>Columbus</td>
<td>Wilmington</td>
</tr>
<tr>
<td>LOGAN</td>
<td>Dayton</td>
<td>Wilmington</td>
</tr>
<tr>
<td>LORAIN</td>
<td>Cleveland</td>
<td>Buffalo</td>
</tr>
<tr>
<td>LUCAS</td>
<td>Toledo</td>
<td>Detroit KDTX</td>
</tr>
<tr>
<td>MADISON</td>
<td>Columbus</td>
<td>Wilmington</td>
</tr>
<tr>
<td>MAHONING</td>
<td>Youngstown</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>County</td>
<td>Surface</td>
<td>Mixing height</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>MARION</td>
<td>Columbus</td>
<td>Wilmington</td>
</tr>
<tr>
<td>MEDINA</td>
<td>Akron</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>MEIGS</td>
<td>Parkersburg</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>MERCER</td>
<td>Fort Wayne</td>
<td>Wilmington</td>
</tr>
<tr>
<td>MIAMI</td>
<td>Dayton</td>
<td>Wilmington</td>
</tr>
<tr>
<td>MONROE</td>
<td>Parkersburg</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>MONTGOMERY</td>
<td>Dayton</td>
<td>Wilmington</td>
</tr>
<tr>
<td>MORGAN</td>
<td>Parkersburg</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>MORROW</td>
<td>Columbus</td>
<td>Wilmington</td>
</tr>
<tr>
<td>MUSKINGUM</td>
<td>Columbus</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>NOBLE</td>
<td>Parkersburg</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>OTTAWA</td>
<td>Toledo</td>
<td>Detroit KDTX</td>
</tr>
<tr>
<td>PAULDING</td>
<td>Fort Wayne</td>
<td>Wilmington</td>
</tr>
<tr>
<td>PERRY</td>
<td>Columbus</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>PICKAWAY</td>
<td>Columbus</td>
<td>Wilmington</td>
</tr>
<tr>
<td>PIKE</td>
<td>Huntington</td>
<td>Wilmington</td>
</tr>
<tr>
<td>PORTAGE</td>
<td>Akron</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>PREBLE</td>
<td>Dayton</td>
<td>Wilmington</td>
</tr>
<tr>
<td>PUTNAM</td>
<td>Fort Wayne</td>
<td>Wilmington</td>
</tr>
<tr>
<td>RICHLAND</td>
<td>Columbus</td>
<td>Wilmington</td>
</tr>
<tr>
<td>ROSS</td>
<td>Columbus</td>
<td>Wilmington</td>
</tr>
<tr>
<td>SANDUSKY</td>
<td>Toledo</td>
<td>Detroit KDTX</td>
</tr>
<tr>
<td>SCIOTO</td>
<td>Huntington</td>
<td>Wilmington</td>
</tr>
<tr>
<td>SENECA</td>
<td>Toledo</td>
<td>Wilmington</td>
</tr>
<tr>
<td>SHELBY</td>
<td>Dayton</td>
<td>Wilmington</td>
</tr>
<tr>
<td>STARK</td>
<td>Akron</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>SUMMIT</td>
<td>Akron</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>TRUMBULL</td>
<td>Youngstown</td>
<td>Pittsburgh</td>
</tr>
</tbody>
</table>
Table 1a. Supplemental map to Table 1

Ohio Surface and Mixing Height Station Assignments

Surface Station
- Erie
- Youngstown
- Cleveland
- Toledo
- Akron
- Pittsburgh
- Columbus
- Fort Wayne
- Dayton
- Parkersburg
- Huntington
- Cincinnati

Mixing Height
- Buffalo
- Pittsburgh
- Detroit KDTX
- Wilmington
2. Anemometer heights

<table>
<thead>
<tr>
<th>Site</th>
<th>Anemometer height</th>
<th>Station number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akron/Canton (CAK)</td>
<td>10 meters</td>
<td>14895</td>
</tr>
<tr>
<td>Cincinnati Lunken (LUK)</td>
<td>10 meters</td>
<td>93812</td>
</tr>
<tr>
<td>Cleveland Hopkins (CLE)</td>
<td>10 meters</td>
<td>14820</td>
</tr>
<tr>
<td>Cleveland Burke (BKL)</td>
<td>7.9 meters</td>
<td>04853</td>
</tr>
<tr>
<td>Columbus (CMH)</td>
<td>10 meters</td>
<td>14821</td>
</tr>
<tr>
<td>Dayton Intl. (DAY)</td>
<td>10 meters</td>
<td>93815</td>
</tr>
<tr>
<td>Defiance Memorial (DFI)</td>
<td>10 meters</td>
<td>04851</td>
</tr>
<tr>
<td>Lorain County (LPR)</td>
<td>10 meters</td>
<td>04849</td>
</tr>
<tr>
<td>Mansfield (MFD)</td>
<td>10 meters</td>
<td>14891</td>
</tr>
<tr>
<td>Toledo Express (TOL)</td>
<td>10 meters</td>
<td>94830</td>
</tr>
<tr>
<td>Toledo Metcalf (TDZ)</td>
<td>10 meters</td>
<td>04848</td>
</tr>
<tr>
<td>Youngstown (YNV)</td>
<td>10 meters</td>
<td>14852</td>
</tr>
<tr>
<td>Charleston Yeager, WV (CRW)</td>
<td>7.9 meters</td>
<td>13866</td>
</tr>
<tr>
<td>Cincinnati/Covington, KY (CVG)</td>
<td>10 meters</td>
<td>93814</td>
</tr>
<tr>
<td>Erie, PA (ERI)</td>
<td>10 meters</td>
<td>14860</td>
</tr>
<tr>
<td>Fort Wayne, IN (FWA)</td>
<td>10 meters</td>
<td>14827</td>
</tr>
<tr>
<td>Huntington, WV (HTS)</td>
<td>7.9 meters</td>
<td>03860</td>
</tr>
<tr>
<td>Pittsburgh, PA (PIT)</td>
<td>10 meters</td>
<td>94823</td>
</tr>
<tr>
<td>Parkersburg, WV (PKB)</td>
<td>10 meters</td>
<td>03804</td>
</tr>
<tr>
<td>Wheeling, WV (HLG)</td>
<td>10 meters</td>
<td>14894</td>
</tr>
</tbody>
</table>
3. Table of standards and screening values

Table 3 on the following page is a practical compilation of standards and screening values used in air quality modeling in Ohio. More information about the standards, levels, and terminology can be found in this guide and in sources referenced in the table. The values in this table are current as of publication date and subject to change with revisions and updates to corresponding rules, policies, and guidance. Where state or federal rules are changed that conflict with the values in this table, the appropriate updated rule supersedes these values. Entries with a “---” represent a standard, increment, or level without an established value.
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Period</th>
<th>NAAQS standards (µg/m³) unless noted</th>
<th>A</th>
<th>NSR SER (tpy)</th>
<th>B</th>
<th>SMC (µg/m³)</th>
<th>C</th>
<th>PSD Class I Increment (µg/m³)</th>
<th>D</th>
<th>SIL (µg/m³)</th>
<th>PSD Class II Increment (µg/m³)</th>
<th>D</th>
<th>SIL (µg/m³)</th>
<th>SER (tpy)</th>
<th>GAII (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Monoxide</td>
<td>1-hour</td>
<td>35 ppm 40000</td>
<td>a</td>
<td>revoked</td>
<td>100</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>100</td>
<td>10000 a</td>
</tr>
<tr>
<td></td>
<td>8-hour</td>
<td>9 ppm 10000</td>
<td>a</td>
<td>revoked</td>
<td>575</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>2500 a</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>rolling 3-month</td>
<td>0.15 b</td>
<td>F</td>
<td>0.6</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>0.6</td>
<td>0.0375 b</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>1-hour</td>
<td>100 ppb 188</td>
<td>c</td>
<td>-----</td>
<td>40</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>7.5 4 ppb</td>
<td>G</td>
<td>188 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>53 ppb 100</td>
<td>b</td>
<td>F</td>
<td>14</td>
<td>2.5 b</td>
<td>0.1 H</td>
<td>25 b</td>
<td>1 E</td>
<td>12.5 b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone</td>
<td>8-hour (2008)</td>
<td>0.075 ppm d</td>
<td>F</td>
<td>VOC - 40 NOx - 40</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-hour (2015)</td>
<td>0.070 ppm d</td>
<td>F</td>
<td></td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>8.5 b</td>
<td></td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>filterable + condensable</td>
<td>24-hour</td>
<td>35 e</td>
<td>F</td>
<td>PM<sub>2.5</sub> - 10 SO<sub>2</sub> - 40 NO<sub>x</sub> - 40</td>
<td>0</td>
<td>2 b</td>
<td>0.27 l</td>
<td>9 a</td>
<td>1.2 l</td>
<td>10 4.5 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>12 f</td>
<td>15 f</td>
<td></td>
<td>0</td>
<td>1 b</td>
<td>0.05 l</td>
<td>4 b</td>
<td>0.2 l</td>
<td>2 b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>filterable + condensable</td>
<td>24-hour</td>
<td>150 g</td>
<td>F</td>
<td></td>
<td>15</td>
<td>10 a</td>
<td>0.3 H</td>
<td>30 a</td>
<td>5 E</td>
<td>15 15 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>revoked</td>
<td>revoked</td>
<td></td>
<td>4 b</td>
<td>0.2 H</td>
<td>17 b</td>
<td>10 E</td>
<td>8.5 b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>1-hour</td>
<td>75 ppb 196</td>
<td>h</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>7.9 3 ppb</td>
<td>J</td>
<td>196 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>-----</td>
<td>0.5 ppm 1300 a</td>
<td>40</td>
<td>-----</td>
<td>25 a</td>
<td>1.0 H</td>
<td>512 a</td>
<td>25 E</td>
<td>256 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>revoked</td>
<td>-----</td>
<td></td>
<td>13</td>
<td>5 a</td>
<td>0.2 H</td>
<td>91 a</td>
<td>5 E</td>
<td>45.5 b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>revoked</td>
<td>-----</td>
<td></td>
<td>2 b</td>
<td>0.1 H</td>
<td>20 b</td>
<td>1 E</td>
<td>10 b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Toxics</td>
<td>1-hour</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0 K MAGLC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A Air quality standards found in 40 CFR 50 are codified in OAC 3745-25-02.
B PSD Significant Emission Rates found in 40 CFR 52.21(b)(23) are codified in OAC 3745-31-01(VVVV).
C Not to be exceeded. The PSD Monitoring De Minimis Concentrations (SMCs) are found in 40 CFR 52.21(i) and codified in OAC 3745-31-01(SSS)(1)(b).
D PSD Class I and Class II Ambient Air Increments found in 40 CFR 52.21(c) are codified in OAC 3745-31-11(B).
E Not to be exceeded. SILs found in PSD regulations 40 CFR 51.165(b)(2) are codified in OAC 3745-31-23(A).
F Secondary standard has the same level and form as primary standard.
G Not to be exceeded. U.S. EPA. (June 29, 2010). “Guidance Concerning the Implementation of the 1-hour NO2 NAAQS for the Prevention of Significant Deterioration Program”
H Not to be exceeded. SILs based on proposed rule 61 F.R. 38250 “Prevention of Significant Deterioration (PSD) and Nonattainment New Source Review (NSR)”
K Compounds considered highly toxic may require modeling at rates less than 1.0 tpy.

a Model may not demonstrate exceedance of the standard more than once per year (H2H 1-yr).
b Modeled maximum may not exceed the standard for respective averaging time (H1H).
c Modeled 98th percentile 1-hour daily maximum must not exceed the standard (H8H 5-yr average).
d Modeled fourth-highest 8-hour daily maximum must not exceed the standard (H4H 5-yr average).
e Modeled 99th percentile 24-hour concentrations must not exceed the standard (H8H 5-yr average).
f Modeled average of annual mean must not exceed the standard (H1H 5-year average).
g Modeled three-year average not to be exceeded more than once per year over three-year period (H6H 5-yr).
h Modeled 99th percentile 1-hour daily maximum must not exceed the standard (H4H 5-yr average).
i Modeled maximum must not exceed MAGLC calculated by procedures described in “Option A” in DAPC’s Engineering Guide 70 “Air Toxic Analysis.”