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Outline of Presentation

m What we learned during the pre-dreissenid era
- Internal phosphorus cycling (DiToro and Connolly)
- Bioavailability studies and |mpact on Lake Erie

o, R modeling
Fige . = Sediment diagenesis modeling (Fitzpatrick)

- Impact of hypoxia on P flux from sediments

m How has the dreissenid invasion changed things
- Modeling ecological impacts of dreissenids

- Hypothesis of new ecosystem functioning - the
nearshore-offshore paradox

B Approaches to develop a new management
paradigm
- Ongoing programs
- Proposed program GLEMM




1972 Great Lakes Water Quality Agreement

and Annex 3 Focused on Eutrophication

m Public concern leads to political action

m 1972 signing of Binational Great Lakes Water
Quality Agreement (GLWQA)
“restore and maintain the chemical, physical, and

"’::ﬁ biological integrity of the Great Lakes Basin Ecosystem.”
@2 m Annex 3 (1978)

- Implicated phosphorus as primary cause of nuisance
algal growth

- phosphorus concentrations ““...should be limited to the
extent necessary to prevent nuisance growths of algae,
weeds and slimes that are or may become injurious to
any beneficial water use.’

“year-round aerobic conditions in bottom waters of the
central basin of Lake Erie”

- Initiated efforts to reduce phosphorus loads

- Established targets phosphorus Ioads to control
eutrophic conditions



Task Group lll models used to establish Annex 3
target P loads

Vollenweider (all basins)
- Empirical : - 1

Total phosphorus
loading

- Steady-state

Chapra (all basms)
- Semi-empirical | | J < % ol
- Dynamic TP mass balance -
- Chlorophyll a and DO empirically Total phosphorus
correlated with TP - - . Mnsissiions

- Thomann Lake | model (Lake Ontario 1

and Lake Huron) _ | i
- Process model -

- Dynamic MB of P, N, chlorophyll, S
Z00 p I an kton oncentration *

DiToro Lake Erie model |
. = Process model 'ﬁ \

- Dynamic MB of P, N, Si, DO, dlatom and I~ cn >
non-diatom chlorophyll zooplankton E s i l P —— l

Bierman Saginaw Bay model
- Process model
- Dynamic MB of P, N, Si, five phytoplankton
groups, zooplankton




DiToro, et al. (1976) Lake Erie
Eutrophication Model
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Water Column Cycling of Phosphorus

SOURCES OF ALGAL-AVAILABLE PHOSPHORUS IN LAKES
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LAKE ERIE CENTRAL BASIN VERIFICATION

CALIBRATION 1970 VERIFICATION 1975
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FIG. 5. Comparison of 1970 calibration (lefthand side) and 1975 verification (righthand side).
D_msafved oxygen (top), chlorophyll a (upper middle), orthophosphorus (lower middie), nitrate
nitrogen (bottomn). Symbols mean + standard deviation; lines are the computations.



P Load - Chlorophyll a Relationship

INn Central Basin

LAKE ERIE CENTRAL BASIN
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FIGURE 5

Relationship between chlorophyll a concentration and whole-lake phosphorus load in the Central Basin of Lake
Erie for the Vollenweider, DiToro and Chapra models



P Load - Area of Anoxia Relationship In

Central Basin

LAKE ERIE CENTRAL BASIN
DITORO MODEL
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FIGURE 9

Relationship between area of anoxia and whole-lake phosphorus load in the Central Basin of Lake Erie for the
DiToro model :



P Load - Minimum DO Relationship

INn Central Basin

LAKE ERIE CENTRAL BASIN
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TP Loads to Lake Erie (1967 - 2003)
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TP Loads to Lake Erie (1967 - 2001)
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Total Phosphorus Loadings to Lake Erie by
Source Category (1985-2000)
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Lake Erie Model
Post-audit
(Chl a)
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F1G. 10a.  Comparison of model predicted and 1970 to 1980 observed cruise mean
and eastern basins of Lake Erie.
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1980’s Brought Research on Algal

Avallability of Phosphorus

SOURCES OF ALGAL-AVAILABLE PHOSPHORUS IN LAKES

- -
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Assessing Phosphorus Availability in Great

Lakes Tributaries

Technical Note
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Algal Uptake in DCDA Correspond to

Decrease in NaOH-extractable P

-t
S~
Q 0.60
[ =]
E
n: 0.”,1 Y= 0.692 X + 0035
- (r = 0.89. N = 17)
o
. o 0'40 -
T, b 4
. [, ° ]
#« S 034 |
y —
on
. . o
:; 0.20 o
a
Q)
2 0.10 4
e |
©
—
g 0.00 T Y A | T
3 0.00 0.20 0.40 0.60

Decrease in R-NaOH-P, mg P/g

FIG. 1. Regression of cumulative uptake of P by algae
on changes in R-NaOH-P content of sediments during
available P bioassays. Sediments were collected from
the Maumee, Sandusky, and Cuyahoga rivers and
Honey Creek (Ohio) during 1981.



R-NaOH-P is good surrogate for ultimately available

particulate phosphorus in tributaries
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Fig. 1. Regression of algal available phospharus on R-NaQH - P far 4C samples of suspended
solids from Lower Great Lakes tributaries.



Research Led to Modification of DiToro

Lake Erie Model

produced solids (i.e.,
algae)

- Plot of equation (2)
- = Plot of equation (3)

A DCDA data for Sampie
No.17 (Maumee) -
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FIG. 5. Comparison of current Great Lakes model pre-

dictions of BAPP versus time (equation (3)) with actual
data for sample no. 17 and first-order fit (equation (2)).




Tested Three Versions of Lake Erie Model
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Fig. 4. Schematic diagram cf P dynamics (kinetics, loading, and settling) in 3 modifications \
of Lake Erie phytoplankton model : LEM1T and LEM2 (left), and LEM3 (right).
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Importance of P Release from Particulates

INn the Water Column
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-——=NOPR

Central Basin Epilimniaon
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Fig. 8c. Sensitivity of Chlorophyll-g predictions by LEM3 using 1975 data for Central Basin
epilimnion ta exclusion of EUP conversion submodel (NOBP) and IUP recycle submodel
(NOPR). BASE is LEM3 with both ultimately available P conversion submodels operating.



Halving SRP Load Gives Bigger Response

than Halving EUP Load
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ADVANCES IN PHOSPHORUS
SEDIMENT FLUX MODELING
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Understanding of Sediment-Water

Phosphorus Exchange Processes

Water Column  Aerobic Layer Thickness
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Schematic of Phosphorus Diagenesis/Flux Sub-

model In Revised DiToro Lake Erie Model
(DiToro, 2001)
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Overlying Water DO < 2 mg/L Causes
Significant P Flux (piToro, 2001)
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Fig. 6.6 (A) Phosphate flux J[POy4] versus phosphorus diagenesis Jp. (B) Ratio of phos-
phate flux to phosphorus diagenesis J[POy4]/Jp versus overlying water dissolved oxygen
concentration [O; (0)].




Lake Erie Model Post-audit with updated

sediment diagenesis model (Fitzpatrick, 200
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" ECOFORE LEVEL 1 ANALYSIS
OF SEDIMENT P FLUX




Simple 1D DO Model for Central Basin

m 1D Vertical Dynamic Model for
Central Basin o
I Diffusion

§ m Hydrodynamic model is =) \WCOD

; physically driven _ =) SOD
., - Air temp, wind speed, solar
& - radiation

Static Surface Level, varying
thermocline depth

48 Vertical Layers of 0.5m I |

thickness \ _'/ |
Simple Dissolved Oxygen i

Model linked to Hydrodynamic \ -»/

Model | Hypolimnipn
- DO rate term (WCQOD) is \ 7‘

aggregate of production and \I =) +.

consumption processes in the
~ water column

- SOD in bottom Iéyer
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Model - Data Comparison Results

.~ Hypolimnion DO Depletion (1987-2005)




Time-Series of Annual Calibrated WCQOD
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Surface Area at Specified Depth (m~2)

Hypsographic Curve of Lake Erie Central Basin
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Post Dreissenid Ecosystem Changes

1970s and ‘80s
- Meeting target phosphorus loads establlshed by GLWQA

- Virtual elimination of cyanophyte blooms and Cladophora
nuisance problems .

Late 1980’s and early “90s
- Dreissenid invasion of Great Lakes

Last Decade: Apparent reversion to historical problems

- Reoccurrence of ““Dead Zone” in Lake Erie central basin

- Reoccurrence of Microcystis cyanophyte blooms :

- Reoccurrence of nearshore attached nuisance algae (Cladophora)
“Muck’ washing up on shoreline

= Apparent “desertification” of offshore waters of deeper lakes
(Lake Michigan, Lake Huron, Lake Ontario)

Circumstantial or Is there a dreissenid- related
cause-effect relationship at work?




Research and Observations Suggest that

Dreissenids are Effective Ecosystem Engineers
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Interactions of dreissenid mussels with other ecosystem components in shallow
systems via mussel feeding, nutrient excretion (blue), and physical ecosystem
engineering (habitat modification: yellow & red). Solid lines indicate material flow .
(C, nutrients, sediment), and broken lines indicate physical engineering effects.



Zebra Mussel Densities in Saginaw Bay

(Avg. 1991-1995)
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Phosphorus Cycling in New Saginaw Bay Ecosystem

Solar Radiation
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Higher phosphorus concentration and

dreissenid density favors Microcystis

Open Water Responses | |
%, Sorg Near Shore Responses
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Annual Total Production, mg/L

Increased Water Clarity Promotes Benthic

Primary Production
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Bay-wide Primary Production shifts to

benthic with dreissenids

Gross Production
Remained Same

with Zebra Mussels

without Zebra Mussels
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Pelagic
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Pelagic
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Chladophora Respond to Nearshore SRP

and Light Availability (auer, Higgins, et al.)

1965 1975 1985

1995 2005

(photo by Scott Higgins-June
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Lake Huron Spring Total Phosphorus
Lake Huron Spring Dissolved Reactive Si02
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Conceptual Model of Dreissenid Impacts
Spring

High runoff of P

Diatoms grow by
taking up Available P

I
Nearshorg Boundary
Phytoplankton 15 - 30 meters depth

<€ >

Delivery of P and
plankton to offshore is
reduced relative to pre-
dreissenid conditions

Some P released in
available form

Dreissenids filter
particulate matter,
including plankton,
and associated P out

™~

of water column Some P released
thus increasing water in unavailable
clarity form as feces/

pseudofeces




Conceptual Model of Dreissenid Impacts

Early Summer

Lower runoff of P

Cladophora grow on
available P released
by dreissenids and
plankton recycle
and increased water
clarity

Phytoplankton shift to
summer assemblage but
must compete with
Cladophora for available P

I
Nearshorg Boundary
Phytoplankton 15 - 30 meters depth

Dreissenids continue to

filter and can

Delivery of P and
outcompete zooplankton

plankton to offshore is
reduced relative to pre-
dreissenid conditions

|

Some P releasec
In unavailable
form as feces/
pseudofeces




Conceptual Model of Dreissenid Impacts
Late Summer

Very little P
from watershed

Cladophora detach -
some wash up.on
shore and some are
transport along
bottom to profundal
zone '

rejection to bloom.

High late summer temperature causes
senescence and detachment of .
Cladophora and provides optimum T
for cyanophytes. Cyanophytes use
increased available P and selective

Phytoplankton

<€

I
Nearshorg Boundary
15 - 30 meters depth

Dreissenids selectively
-reject cyanophytes -

Warmer T
stimulates
mineralization of
P in feces/
pseudofeces

>

Delivery of unavailable P
to offshore but
mineralization there is
not complete; some ends
up in sediments




Summary Hypothesis

Dreissenid filtering-related impacts on -water
clarity and phosphorus cycling in the nearshore
zones of the lakes have fueled the resurgence of
Cladophora and other attached algae while at the
same time greatly reducing the primary |
production potential of offshore waters in these
systems by trapping phosphorus in the nearshore
and offshore profundal environments. |



Ongoing Programs

m Ecofore | | .
- Forecasting severity and impacts of hypoxia in Lake
Erie
Saginaw Bay multi-stressor study
- Development of Adaptive Integrated Management

“"..':'; ‘OSU Lake Erie Biocomplexity Project
v - Range of model complexities

- Human - lake interactions
e - Beginning complex linked hydrodynamic -
e eutrophication model for Sandusky Bay - nearshore
i NG Lake Erie
‘Waterloo Lake Erie ecosystem modeling

- Nearshore shunt hypothesis -
Lake Ontario ecosystem study
- Nearshore monitoring and modeling in 2008

EPA and collaborators developing nearshore towed
-sensor devices for rapid monitoring of nearshore
conditions . .




Ecosystem Forecasting of Lake Erie Hypoxia

What the C System Drivers/Forcing Functions
[ 1at are e causes,
Consequences, and Potential Phosphorus Basin
L : g Land U M nt Climat
Remedies of Lake Erie Hypoxia? e b Hydrology e
m Linked set of models to forecast:
- changes in nutrient loads to Lake Erie l
o - responses of central basin hypoxia to |Watershed Forecasts
"’*’f&' .multiple stressors- :
& . = P loads, hydrometeorology, dreissenids Tributary Flows Pllﬂ?;gm
- potential ecological responses to
changes in hypoxia
R Approach | |
¥ ; - Models with range of complexity Lake Water Quality Forecasts
- “Consider both anthropogenic and Temperature :
oY Profiles and Hydraulic Primary Dissolved
natural stressors : Hypoimnion Transpor Production Oxygen
: Profiles
- Use available data - IFYLE, LETS, etc. Volume "
e ’ - Will assess uncertainties in both l
; drivers and models
: g : s ; Ecological Impact Forecasts
- Apply models within an Integrated d 2
Assessment framework to inform , Fish Fish Habitat Food Web and
decision making for policy and P’;’“““‘_"“' Quality and Fisheries
management . Rela?i%?]}:ﬁips Growth Rates Responses




Adaptive Integrated Framework for Managing
Impacts of Multiple Stressors - Application to

Saginaw Bay Ecosystem

Ecosystem Ecosystem
drivers characterization (data)

S ./

[Modellng syntheS|s

B) Guidance for future : A) Guidance for future
management actions empirical efforts

\ .
Scientific
evaluation

&
Stakeholder
\_ assessment Y
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