Biological and Water Quality Study of the Mahoning River

Mahoning River Corridor of Opportunity Former Youngstown Sheet and Tube - Campbell Works Coke Plant 2003

Mahoning County, Ohio

December 16, 2003

OEPA Report EAS/2003-12-9

prepared for

State of Ohio Environmental Protection Agency Division of Emergency and Remedial Response Northeast District Office

prepared by

State of Ohio Environmental Protection Agency Division of Surface Water Lazarus Government Center 122 South Front Street Columbus, Ohio 43215

Bob Taft, Governor State of Ohio Chris Jones, Director Environmental Protection Agency

TABLE OF CONTENTS

INTRODUCTION	1
SUMMARY	2
RECOMMENDATIONS	2
METHODS	6
RESULTS	9
Surface Water	9
Sediment Chemistry	9
Physical Habitat for Aquatic Life	10
Fish Community	11
Macroinvertebrate Community	11
REFERENCES	17
APPENDICES	20

NOTICE TO USERS

Ohio EPA incorporated biological criteria into the Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1) regulations in February 1990 (effective May 1990). These criteria consist of numeric values for the Index of Biotic Integrity (IBI) and Modified Index of Well-Being (MIwb), both of which are based on fish assemblage data, and the Invertebrate Community Index (ICI), which is based on macroinvertebrate assemblage data. Criteria for each index are specified for each of Ohio's five ecoregions (as described by Omernik 1987), and are further organized by organism group, index, site type, and aquatic life use designation. These criteria, along with the existing chemical and whole effluent toxicity evaluation methods and criteria, figure prominently in the monitoring and assessment of Ohio's surface water resources.

The following documents support the use of biological criteria by outlining the rationale for using biological information, the methods by which the biocriteria were derived and calculated, the field methods by which sampling must be conducted, and the process for evaluating results:

- Ohio Environmental Protection Agency. 1987a. Biological criteria for the protection of aquatic life: Volume I. The role of biological data in water quality assessment. Div. Water Qual. Monit. & Assess., Surface Water Section, Columbus, Ohio.
- Ohio Environmental Protection Agency. 1987b. Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Div. Water Qual. Monit. & Assess., Surface Water Section, Columbus, Ohio.
- Ohio Environmental Protection Agency. 1989b. Addendum to Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Div. Water Qual. Plan. & Assess., Ecological Assessment Section, Columbus, Ohio.
- Ohio Environmental Protection Agency. 1989c. Biological criteria for the protection of aquatic life: Volume III.. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Div. Water Quality Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 1990. The use of biological criteria in the Ohio EPA surface water monitoring and assessment program. Div. Water Qual. Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.
- Rankin, E.T. 1989. The qualitative habitat evaluation index (QHEI): rationale, methods, and application. Div. Water Qual. Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.

Since the publication of the preceding guidance documents, the following new publications by the Ohio EPA have become available. These publications should also be consulted as they represent the latest information and analyses used by the Ohio EPA to implement the biological criteria.

- DeShon, J.D. 1995. Development and application of the invertebrate community index (ICI), pp. 217-243. in W.S. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Riskbased Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Rankin, E. T. 1995. The use of habitat assessments in water resource management programs, pp. 181-208. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. and E.T. Rankin. 1995. Biological criteria program development and implementation in Ohio, pp. 109-144. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. and E.T. Rankin. 1995. Biological response signatures and the area of degradation value: new tools for interpreting multimetric data, pp. 263-286. in W. Davis and T. Simon (eds.).
 Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. 1995. Policy issues and management applications for biological criteria, pp. 327-344. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. and E.T. Rankin. 1995. The role of biological criteria in water quality monitoring, assessment, and regulation. Environmental Regulation in Ohio: How to Cope With the Regulatory Jungle. Inst. of Business Law, Santa Monica, CA. 54 pp.

These documents and this report may be obtained by writing to:

Ohio EPA, Division of Surface Water Ecological Assessment Section 4675 Homer Ohio Lane Groveport, Ohio 43125 (614) 836-8777

FOREWORD

What is a Biological and Water Quality Survey?

A biological and water quality survey, or "biosurvey", is an interdisciplinary monitoring effort coordinated on a waterbody specific or watershed scale. This effort may involve a relatively simple setting focusing on one or two small streams, one or two principal stressors, and a handful of sampling sites or a much more complex effort including entire drainage basins, multiple and overlapping stressors, and tens of sites. Each year Ohio EPA conducts biosurveys in 6-10 different study areas with an aggregate total of 350-400 sampling sites.

Ohio EPA employs biological, chemical, and physical monitoring and assessment techniques in biosurveys in order to meet three major objectives: 1) determine the extent to which use designations assigned in the Ohio Water Quality Standards (WQS) are either attained or not attained; 2) determine if use designations assigned to a given water body are appropriate and attainable; and 3) determine if any changes in key ambient biological, chemical, or physical indicators have taken place over time, particularly before and after the implementation of point source pollution controls or best management practices. The data gathered by a biosurvey is processed, evaluated, and synthesized in a biological and water quality report. Each biological and water quality study contains a summary of major findings and recommendations for revisions to WQS, future monitoring needs, or other actions which may be needed to resolve existing impairment of designated uses. While the principal focus of a biosurvey is on the status of aquatic life uses, the status of other uses such as recreation and water supply, as well as human health concerns, are also addressed.

The findings and conclusions of a biological and water quality study may factor into regulatory actions taken by Ohio EPA (*e.g.*, NPDES permits, Director's Orders, the Ohio Water Quality Standards [OAC 3745-1]), and are eventually incorporated into Water Quality Permit Support Documents (WQPSDs), State Water Quality Management Plans, the Ohio Nonpoint Source Assessment, and the Ohio Water Resource Inventory (305[b] report).

Hierarchy of Indicators

A carefully conceived ambient monitoring approach, using cost-effective indicators comprised of ecological, chemical, and toxicological measures, can ensure that all relevant pollution sources are judged objectively on the basis of environmental results. Ohio EPA relies on a tiered approach in attempting to link the results of administrative activities with true environmental measures. This integrated approach is outlined in Figure 1 and includes a hierarchical continuum from administrative to true environmental indicators. The six "levels" of indicators include: 1) actions taken by regulatory agencies (permitting, enforcement, grants); 2) responses by the regulated community (treatment works, pollution prevention); 3) changes in discharged quantities (pollutant loadings); 4) changes in ambient conditions (water quality, habitat); 5) changes in uptake and/or assimilation (tissue contamination, biomarkers, wasteload allocation); and, 6) changes in health,

DSW/EAS 2003-12-9	М	Iahonin	g River/ Youngstown S&T - Cample	bell Works	December 16, 2003
Administ	LEVEL 1	1	Actions by EPA and States	NPDES Permit Issua Compliance/Enforce Pretreatment Program Actual Funding CSO Requirements Storm Water Permits 319 NPS Projects 404/401 Certification Stream/Riparian Prot	nce ment n ection
trative	LEVEL 2	2	Responses by the Regulated Communitiy	POTW Construction Local Limits Storm Water Controls BMPs for NPS Contro Pollution Prevention M	ol Neasures
	LEVEL 3	3	Changes in Discharge Quantities	Point Source Loading Effluent & Influent Whole Effluent Toxici NPDES Violations Toxic Release Invent Spills & Other Releas Fish Kills	ıs - ity (WET) ory es
True	LEVEL 4	4	Changes in Ambient Conditions	Water Column Chemis Sediment Chemistry Habitat Quality Flow Regime	stry
Environm	LEVEL (5	Changes in Uptake and/or Assimilation	Assimilative Capacity TMDL/WLA Biomarkers Tissue Contamination	' - 1
ental	LEVEL 6	6	Changes in Health and Ecology, or Other Effects	Biota (Biocriteria) Bacterial Contaminatio Target Assemblages (RT&E, Declining Spe	on ecies)

Figure 1. Hierarchy of administrative and environmental indicators which can be used for water quality management activities such as monitoring and assessment, reporting, and the evaluation of overall program effectiveness. This is patterned after a model developed by U.S. EPA (1995).

ecology, or other effects (ecological condition, pathogens). In this process the results of administrative activities (levels 1 and 2) can be linked to efforts to improve water quality (levels 3, 4, and 5) which should translate into the environmental "results" (level 6). Thus, the aggregate effect of billions of dollars spent on water pollution control since the early 1970s can now be determined with quantifiable measures of environmental condition.

Superimposed on this hierarchy is the concept of stressor, exposure, and response indicators. *Stressor* indicators generally include activities which have the potential to degrade the aquatic environment such as pollutant discharges (permitted and unpermitted), land use effects, and habitat modifications. *Exposure* indicators are those which measure the effects of stressors and can include whole effluent toxicity tests, tissue residues, and biomarkers, each of which provides evidence of biological exposure to a stressor or bioaccumulative agent. *Response* indicators are generally composite measures of the cumulative effects of stress and exposure and include the more direct measures of community and population response that are represented here by the biological indices which comprise Ohio's biological criteria. Other response indicators could include target assemblages, *i.e.*, rare, threatened, endangered, special status, and declining species or bacterial levels which serve as surrogates for the recreational uses. These indicators represent the essential technical elements for watershed-based management approaches. The key, however, is to use the different indicators *within* the roles which are most appropriate for each.

Describing the causes and sources associated with observed impairments revealed by the biological criteria and linking this with pollution sources involves an interpretation of multiple lines of evidence including water chemistry data, sediment data, habitat data, effluent data, biomonitoring results, land use data, and biological response signatures within the biological data itself. Thus the assignment of principal causes and sources of impairment represents the association of impairments (defined by response indicators) with stressor and exposure indicators. The principal reporting venue for this process on a watershed scale is a biological and water quality report. These reports then provide the foundation for aggregated assessments such as the Ohio Water Resource Inventory (305[b] report), the Ohio Nonpoint Source Assessment, and other technical bulletins.

Ohio Water Quality Standards: Designated Aquatic Life Uses

The Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1) consist of designated uses and chemical, physical, and biological criteria designed to represent measurable properties of the environment that are consistent with the goals specified by each use designation. Use designations consist of two broad groups, aquatic life and non-aquatic life uses. In applications of the Ohio WQS to the management of water resource issues in Ohio's rivers and streams, the aquatic life use criteria frequently result in the most stringent protection and restoration requirements, hence their emphasis in biological and water quality reports. Also, an emphasis on protecting for aquatic life generally results in water quality suitable for all uses. The five different aquatic life uses currently defined in the Ohio WQS are described as follows:

- 1) *Warmwater Habitat (WWH)* this use designation defines the "typical" warmwater assemblage of aquatic organisms for Ohio rivers and streams; *this use represents the principal restoration target for the majority of water resource management efforts in Ohio.*
- 2) Exceptional Warmwater Habitat (EWH) this use designation is reserved for waters which support "unusual and exceptional" assemblages of aquatic organisms which are characterized by a high diversity of species, particularly those which are highly intolerant and/or rare, threatened, endangered, or special status (*i.e.*, declining species); this designation represents a protection goal for water resource management efforts dealing with Ohio's best water resources.
- 3) Coldwater Habitat (CWH) this use is intended for waters which support assemblages of cold water organisms and/or those which are stocked with salmonids with the intent of providing a put-and-take fishery on a year round basis which is further sanctioned by the Ohio DNR, Division of Wildlife; this use should not be confused with the Seasonal Salmonid Habitat (SSH) use which applies to the Lake Erie tributaries which support periodic "runs" of salmonids during the spring, summer, and/or fall.
- 4) Modified Warmwater Habitat (MWH) this use applies to streams and rivers which have been subjected to extensive, maintained, and essentially permanent hydromodifications such that the biocriteria for the WWH use are not attainable and where the activities have been sanctioned and permitted by state or federal law; the representative aquatic assemblages are generally composed of species which are tolerant to low dissolved oxygen, silt, nutrient enrichment, and poor quality habitat.
- 5) *Limited Resource Water (LRW)* this use applies to small streams (usually <3 mi.² drainage area) and other water courses which have been irretrievably altered to the extent that no appreciable assemblage of aquatic life can be supported; such waterways generally include small streams in extensively urbanized areas, those which lie in watersheds with extensive drainage modifications, those which completely lack water on a recurring annual basis (*i.e.*, true ephemeral streams), or other irretrievably altered waterways.

Chemical, physical, and/or biological criteria are generally assigned to each use designation in accordance with the broad goals defined by each. As such the system of use designations employed in the Ohio WQS constitutes a "tiered" approach in that varying and graduated levels of protection are provided by each. This hierarchy is especially apparent for parameters such as dissolved oxygen, ammonia-nitrogen, temperature, and the biological criteria. For other parameters such as heavy metals, the technology to construct an equally graduated set of criteria has been lacking, thus the same water quality criteria may apply to two or three different use designations.

Ohio Water Quality Standards: Non-Aquatic Life Uses

In addition to assessing the appropriateness and status of aquatic life uses, each biological and water quality survey also addresses non-aquatic life uses such as recreation, water supply, and human health concerns as appropriate. The recreation uses most applicable to rivers and streams are the Primary Contact Recreation (PCR) and Secondary Contact Recreation (SCR) uses. The criterion for designating the PCR use is simply having a water depth of at least one meter over an area of at least 100 square feet or where canoeing is a feasible activity. If a water body is too small and shallow to meet either criterion the SCR use applies. The attainment status of PCR and SCR is determined using bacterial indicators (*e.g.*, fecal coliforms, *E. coli*) and the criteria for each are specified in the Ohio WQS.

Water supply uses include Public Water Supply (PWS), Agricultural Water Supply (AWS), and Industrial Water Supply (IWS). Public Water Supplies are simply defined as segments within 500 yards of a potable water supply or food processing industry intake. The Agricultural Water Supply (AWS) and Industrial Water Supply (IWS) use designations generally apply to all waters unless it can be clearly shown that they are not applicable. An example of this would be an urban area where livestock watering or pasturing does not take place, thus the AWS use would not apply. Chemical criteria are specified in the Ohio WQS for each use and attainment status is based primarily on chemical-specific indicators. Human health concerns are additionally addressed with fish tissue data, but any consumption advisories are issued by the Ohio Department of Health and are detailed in other documents.

viii

ACKNOWLEDGMENTS

The following Ohio EPA staff are acknowledged for their contribution to this report:

Surface Water - David Altfater Sediment Quality - David Altfater Physical Habitat - David Altfater Biological Assessment: Macroinvertebrate community - Mike Gray Fish community - David Altfater Data Management - Dennis Mishne Report coordination - David Altfater Reviewers - Jeff DeShon, Marc Smith

INTRODUCTION

The City of Struthers owns property along the south bank of the Mahoning River that was once part of a former steel mill known as the Youngstown Sheet and Tube Company (YS&T), Campbell Works. The property evaluated in this study is the former YS&T coke plant located at State Street between the Mahoning River and the P&LE railroad line and between Bridge Street and Walton Avenue in Struthers, Ohio. Ohio EPA is providing technical assistance to the City of Struthers under a grant subsidized Targeted Brownfield Assessment (TBA) for this former coke plant along the Mahoning River. Astro Development, Limited Liability Company (LLC), which operates an aluminum extrusion business on a parcel of the former steel mill site, has proposed to expand its commercial, manufacturing, and industrial operations to the adjacent former coke plant. Through the TBA, the Division of Surface water evaluated surface water, sediment and biological conditions in the Mahoning River to assess the contribution of potential contaminants from the former coke plant area.

Superfund and Brownfield Federal Funding

After the steel mill closed, a partnership was formed which included the cities of Struthers, Youngstown, and Campbell and other entities to redevelop the Youngstown Sheet and Tube site. The site of the former steel mill became known as the Mahoning River Corridor of Opportunity (MRCO). The MRCO, a 1,471 acre site, was the recipient of a U.S. EPA Brownfields Pilot Grant which is in the process of finalizing the close-out report. Although the former coke plant area is part of the MRCO, no money from the U.S. EPA Brownfields Pilot Grant was spent on this area or the proposed segment of the Mahoning River adjacent to the coke plant. This information was verified with Ms. Diane Spencer, Brownfield Project Manager, U.S. EPA, Region 5, Chicago, IL.

The YS&T site is located within Study Area 6 of the proposed Mahoning River Basin Study (originally the Mahoning River GI). Ohio EPA has performed preliminary investigative work, in the form of geographic initiatives and pre-CERCLIS screenings, for Study Areas 1 and 2. None of the pre-remedial work funded through the U.S. EPA grant with the State of Ohio involved properties located south of Weathersfield Township, near the City of Warren. The YS&T property is located considerably downstream from Weathersfield Township.

Specific objectives of this evaluation were to:

- 1) Establish biological conditions in the Mahoning River in the vicinity of the former YS&T Campbell Works coke plant brownfields property by evaluating fish and macroinvertebrate communities,
- 2) Evaluate surface water and sediment chemical quality in the Mahoning River, and
- 3) Determine the aquatic life use attainment status of the Mahoning River with regard to the Warmwater Habitat (WWH) aquatic life use designation codified in the Ohio Water Quality Standards.

SUMMARY

A total of 1.5 miles of the Mahoning River were assessed by the Ohio EPA in 2003. Based on the performance of the biological communities, the entire 1.5 miles of the Mahoning River were in nonattainment of the Warmwater Habitat aquatic life use (Table 1). The non-attainment was caused by poor to fair fish results and a fair macroinvertebrate community. The urbanized condition of the Mahoning River within the study segment (municipal wastewater discharges and sewer overflows), some habitat modifications, and elevated sediment contaminants (related to legacy discharges) contributed to the impaired biological communities. These conditions do not appear associated with chemical constituents released under current conditions at the former YS&T Campbell Works coke plant. Aside from the two unnamed tributaries flowing under the former coke plant property, no obvious discharge pipes or leachate seeps were observed on the property along the Mahoning River. Slightly elevated levels of benzene and toluene were documented in an unnamed tributary (Coke Plant tributary #2) which flows under part of the former coke plant property, although no values exceeded Ohio Water Quality Standards. Sediment contamination is pervasive within the study segment of the Mahoning River, with the highest levels of PAH contaminants recorded adjacent to the lower end of the former YS&T Campbell Works coke plant area.

Biological communities have improved in the Mahoning River study segment since 1994, when fish and macroinvertebrate communities were in the poor to very poor range. Results during 2003 documented fair to poor results.

Sampling during 2003 confirmed the appropriateness of the Warmwater Habitat aquatic life use designation for the Mahoning River. Presently, the Mahoning River is listed as Warmwater Habitat in the Ohio Water Quality Standards (WQS).

RECOMMENDATIONS

Status of Aquatic Life Uses

The aquatic life use designation of Warmwater Habitat (WWH) for the Mahoning River has been confirmed in previous Ohio EPA biological and water quality studies. This study verified the WWH use designation for the Mahoning River, including the impounded section of river adjacent to the former coke plant property.

Status of Non-Aquatic Life Uses

This study verified that the Primary Contact Recreation use is appropriate for the Mahoning River.

Table 1. Attainment status of the existing aquatic life use for the Mahoning River based on biological sampling conducted during August and October, 2003.

RIVER MILE Fish/Invert.	IBI	MIwb	ICI	QHEI	Attainment Status	Site Location
Mahoning Riv	er	Eastern C	Intario	Lake Plain	(EOLP) - WWH	Use Designation
16.5 / 16.5	<u>25</u> *	<u>5.3</u> *	16*	64.5	NON	Upstream coke plant property
16.1 / 16.1	27*	<u>5.6</u> *	20*	77.5	NON	Adjacent coke plant property
15.7 / 15.8	28*	7.3*	26*	79.5	NON	Dst. coke plant property/dam

Ecoregion Biocriteria: Erie-Ontario Lake Plain (EOLP)

INDEX	WWH	EWH	MWH ^b
IBI-Boat	40	48	24/30
MIwb - Boat	8.7	9.6	5.8/6.6
ICI	34	46	22/NA

^a The use attainment status is based on a qualitative assessment of the data as it relates to the CWH use narrative.

^b Modified Warmwater Habitat for channel modified areas/ impounded areas.

* Significant departure from ecoregion biocriterion; poor and very poor results are underlined.

^{ns} Nonsignificant departure from ecoregion biocriterion (≤4 IBI and ICI units, ≤0.5 MIwb units).

NA Not applicable.

Table 2. Sampling locations in the Mahoning River and two unnamed tributaries, 2003. Type of sampling included fish community (F), macroinvertebrate community (M), sediment (S) and surface water (W).

Stream/ River Mile	Type of Sampling	Latitude	Longitude	Landmark				
Mahoning River								
16.5/16.68	F,M,S,W	41.0683	80.6051	Upstream former YS&T Campbell Works coke plant property				
16.1/16.23	F,M,S	41.0629	80.5964	Adjacent former YS&T Campbell Works coke plant property				
15.91	S,W	41.0618	80.5909	Adjacent former YS&T Campbell Works coke plant property				
15.8/15.70	F,M,S,W	41.0608	80.5868	Downstream former YS&T Campbell Works coke plant property/ lowhead dam				
Coke Plant Tributary #1								
0.01	W	41.0632	80.5993	Near mouth of tributary to Mahoning River				
Coke Plant T	Coke Plant Tributary #2							
0.02	W	41.0629	80.5972	Near mouth of tributary to Mahoning River				

Figure 2. Location of the former Youngstown Sheet and Tube Campbell Works coke plant and sampling sites in the Mahoning River, 2003.

METHODS

All physical, chemical, and biological field, laboratory, data processing, and data analysis methodologies and procedures adhere to those specified in the Manual of Ohio EPA Surveillance Methods and Quality Assurance Practices (Ohio Environmental Protection Agency 1989a) and Biological Criteria for the Protection of Aquatic Life, Volumes I-III (Ohio Environmental Protection Agency 1987a, 1987b, 1989b, 1989c), The Qualitative Habitat Evaluation Index (QHEI): Rationale, Methods, and Application (Rankin 1989, 1995) for aquatic habitat assessment, and the Ohio EPA Sediment Sampling Guide and Methodologies (Ohio EPA 2001). Sampling locations are listed in Table 2.

Determining Use Attainment Status

Use attainment status is a term describing the degree to which environmental indicators are either above or below criteria specified by the Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1). Assessing aquatic use attainment status involves a primary reliance on the Ohio EPA biological criteria (OAC 3745-1-07; Table 7-15). These are confined to ambient assessments and apply to rivers and streams outside of mixing zones. Numerical biological criteria are based on multimetric biological indices including the Index of Biotic Integrity (IBI) and modified Index of Well-Being (MIwb), indices measuring the response of the fish community, and the Invertebrate Community Index (ICI), which indicates the response of the macroinvertebrate community. Three attainment status results are possible at each sampling location - full, partial, or non-attainment. Full attainment means that all of the applicable indices meet the biocriteria. Non-attainment means that one or more of the applicable indices fails to meet the biocriteria. Non-attainment means that none of the applicable indices meet the biocriteria or one of the organism groups reflects poor or very poor performance. An aquatic life use attainment table (Table 1) is constructed based on the sampling results and is arranged from upstream to downstream and includes the sampling locations indicated by river mile, the applicable biological indices, the use attainment status (*i.e.*, full, partial, or non), the Qualitative Habitat Evaluation Index (QHEI), and a sampling location description.

Habitat Assessment

Physical habitat was evaluated using the Qualitative Habitat Evaluation Index (QHEI) developed by the Ohio EPA for streams and rivers in Ohio (Rankin 1989, 1995). Various attributes of the habitat are scored based on the overall importance of each to the maintenance of viable, diverse, and functional aquatic faunas. The type(s) and quality of substrates, amount and quality of instream cover, channel morphology, extent and quality of riparian vegetation, pool, run, and riffle development and quality, and gradient are some of the habitat characteristics used to determine the QHEI score which generally ranges from 20 to less than 100. The QHEI is used to evaluate the characteristics of a stream segment, as opposed to the characteristics of a single sampling site. As such, individual sites may have poorer physical habitat due to a localized disturbance yet still support aquatic communities closely resembling those sampled at adjacent sites with better habitat, provided water quality conditions are similar. QHEI scores from hundreds of segments around the state have indicated that values greater than 60 are *generally* conducive to the existence of warmwater faunas whereas scores less than 45 generally cannot support a warmwater assemblage consistent with the WWH biological criteria. Scores greater than 75 frequently typify habitat conditions which have the ability to support exceptional warmwater faunas.

Sediment and Surface Water Assessment

Fine grain sediment samples were collected in the upper 4 inches of bottom material at each Mahoning River location using decontaminated stainless steel scoops. Decontamination of sediment sampling equipment followed the procedures outlined in the Ohio EPA sediment sampling guidance manual (Ohio EPA 2001). Sediment grab samples were homogenized in stainless steel pans (material for VOC analysis was not homogenized), transferred into glass jars with teflon lined lids, placed on ice (to maintain 4°C) in a cooler, and shipped to an Ohio EPA contract lab. Sediment data is reported on a dry weight basis. Surface water samples were collected directly into appropriate containers, preserved and delivered to an Ohio EPA contract lab. Surface water samples were evaluated using comparisons to Ohio Water Quality Standards criteria, reference conditions, or published literature. Sediment evaluations were conducted using guidelines established in MacDonald *et al.* (2000) and USEPA Region 5 Ecological Data Quality Levels - EDQLs (1998).

Macroinvertebrate Community Assessment

Macroinvertebrates were collected from artificial substrates and from the natural habitats at the three Mahoning River sites. The artificial substrate collection provided quantitative data and consisted of a composite sample of five modified Hester-Dendy multiple-plate samplers colonized for six weeks. At the time of the artificial substrate collection, a qualitative multihabitat composite sample was also collected. This sampling effort consisted of an inventory of all observed macroinvertebrate taxa from the natural habitats at each site with no attempt to quantify populations other than notations on the predominance of specific taxa or taxa groups within major macrohabitat types (e.g., riffle, run, pool, margin). Detailed discussion of macroinvertebrate field and laboratory procedures is contained in Biological Criteria for the Protection of Aquatic Life: Volume III, Standardized Biological Field Sampling and Laboratory Methods for Assessing Fish and Macroinvertebrate Communities (Ohio EPA 1989b).

Fish Community Assessment

Fish were sampled twice at each site using pulsed DC electrofishing methods, with sampling distances of 500 meters at each site in the Mahoning River. Fish were processed in the field, and included identifying each individual to species, counting, weighing, and recording any external abnormalities. Discussion of the fish community assessment methodology used in this report is contained in Biological Criteria for the Protection of Aquatic Life: Volume III, Standardized Biological Field Sampling and Laboratory Methods for Assessing Fish and Macroinvertebrate Communities (Ohio EPA 1989b).

Causal Associations

Using the results, conclusions, and recommendations of this report requires an understanding of the methodology used to determine the use attainment status and assigning probable causes and sources of impairment. The identification of impairment in rivers and streams is straightforward - the numerical biological criteria are used to judge aquatic life use attainment and impairment (partial and non-attainment). The rationale for using the biological criteria, within a weight of evidence framework, has been extensively discussed elsewhere (Karr *et al.* 1986; Karr 1991; Ohio EPA 1987a,b; Yoder 1989; Miner and Borton 1991; Yoder 1995). Describing the causes and sources associated with observed

impairments relies on an interpretation of multiple lines of evidence including water chemistry data, sediment data, habitat data, effluent data, land use data, and biological results (Yoder and Rankin 1995). Thus the assignment of principal causes and sources of impairment in this report represent the association of impairments (based on response indicators) with stressor and exposure indicators. The reliability of the identification of probable causes and sources is increased where many such prior associations have been identified, or have been experimentally or statistically linked together. The ultimate measure of success in water resource management is the restoration of lost or damaged ecosystem attributes including aquatic community structure and function. While there have been criticisms of misapplying the metaphor of ecosystem "health" compared to human patient "health" (Suter 1993), in this document we are referring to the process for evaluating biological integrity and causes or sources associated with observed impairments, not whether human health and ecosystem health are analogous concepts.

RESULTS

Surface Water Quality

Chemical analyses were conducted on surface water samples collected on August 19 and October 6-7, 2003 from three locations in the Mahoning River and two locations in unnamed tributaries (Table 3, Appendix Tables 1 and 2). Surface water samples were analyzed for total analyte list inorganics, pesticides, PCBs, volatile organic compounds, and semivolatile organic compounds. Parameters which were in exceedence of Ohio WQS criteria are reported in Table 3.

For the three Mahoning River and two unnamed tributary sampling locations, there were two exceedences of the Ohio WQS human health nondrinking criterion for mercury. One of these exceedences occurred in the Mahoning River upstream from the former YS&T coke plant site, and the other value was reported in a tributary that flows under the coke plant site. Both mercury values were estimated concentrations. None of the chemicals measured in this study exceeded criteria protective of the Warmwater Habitat aquatic life use. However, slightly elevated levels of benzene (41 ug/l) and toluene (7.8 ug/l) were documented in an unnamed tributary (Coke Plant tributary #2) which flows under part of the former coke plant property. Concentrations of nearly all of the organic parameters tested (volatiles, semivolatiles, pesticides, and PCBs) were reported as non-detected. In addition, metals concentrations were very low, with over half of the tested parameters less than lab detection limits. Parameters with measurable concentrations were below applicable Ohio WQS aquatic life criteria. Nutrients, ammonia-N, dissolved oxygen and bacteriological parameters were not tested as part of this evaluation.

Sediment Chemistry

Sediment samples were collected at four locations in the Mahoning River by the Ohio EPA on October 6 and 7, 2003. All stream sampling locations are indicated by river mile in Figure 2. Samples were analyzed for volatile and semivolatile organic compounds, pesticides, PCBs, total analyte list inorganics, percent solids, cyanide, and diesel and gasoline range organics. Specific chemical parameters tested and results are listed in Appendix Table 3.

Sediment data were evaluated using guidelines established in *Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems* (MacDonald *et.al.* 2000), and USEPA Region 5, RCRA Appendix IX compounds - Ecological Data Quality Levels (EDQLs) (USEPA 1998). The consensus-based sediment guidelines define two levels of ecotoxic effects. A *Threshold Effect Concentration* (TEC) is a level of sediment chemical quality below which harmful effects are unlikely to be observed. A *Probable Effect Concentration* (PEC) indicates a level above which harmful effects are likely to be observed. Ecological data quality levels (EDQLs) are initial screening levels used by USEPA to evaluate RCRA site constituents. This tiered approach to evaluating sediment is consistent with OAC 3745-300-09. In addition, sediment reference values (SRVs) for metals (Ohio EPA 2003) are presented in Table 4 for comparison to Mahoning River results.

Sediment collected from all four locations in the Mahoning River (upstream, two adjacent, and downstream

from the former YS&T coke plant property) were considered likely to be harmful to sediment-dwelling organisms (MacDonald *et.a*l. 2000). At all four sediment sampling locations, highly elevated levels of metals (lead, nickel, mercury, and zinc) and polycyclic aromatic hydrocarbons (at least nine different PAH compounds) were observed (Table 4). Total PAH concentrations were highly elevated, with values ranging between 32 and 640 mg/kg. The large number of chemical compounds exceeding PEC levels at all four Mahoning River locations suggest toxic sediment levels. Within the study area, the highest concentrations of PAH parameters in sediment samples occurred in the Mahoning River at the lower adjacent site (RM 15.91). Numerous additional chemicals exceeded TEC and EDQL levels at all four Mahoning River sample locations (Table 4). Disturbance of the sediments at all four Mahoning River sampling sites released oil to the water surface, and the largest amount was observed at the most upstream site (RM 16.68). Diesel range and gasoline range organics were measured at elevated levels at all Mahoning River sites, with the highest concentrations recorded at RM 16.68.

Although sediment contamination is pervasive within the study segment of the Mahoning River, the highest levels of PAH contaminants were recorded adjacent to the lower end of the former YS&T Campbell Works coke plant area. All four of the sites had metals and PAHs which exceeded PEC levels, and these levels are largely related to past effluent discharges from industrial and municipal sources. The contamination of the Mahoning River sediments in the study area likely contributed to the impairment observed in the biological community.

Physical Habitat For Aquatic Life

Physical habitat was evaluated in the Mahoning River at each fish sampling location. Qualitative Habitat Evaluation Index (QHEI) scores are detailed in Table 5.

The three Mahoning River sampling locations were represented by some significant habitat differences. These differences were largely related to a low-head dam located within the study segment at RM 15.90. Downstream from the dam, the river channel was natural, and well represented by pool, run, and riffle areas. Upstream from the dam, which included the adjacent sampling site, the channel was impounded. This resulted in largely a pool habitat, although about five percent of the sampling zone was run habitat. The most upstream site was composed of a natural channel; however, it was 100 percent pool habitat. The lack of riffle areas in the two uppermost sampling sites reduced the QHEI scores compared with the downstream sampling location. Surrounding land use was largely commercial/industrial/urban. At all three sites, gravel and cobble predominated the bottom substrates. Sediment deposition was restricted to areas along both banks. Instream current varied between slow and very fast, with deeper riffle and run areas virtually impossible to wade because of the strong base flows. River flows in the Mahoning River are regulated by several reservoirs, with minimum base flows higher in the summer than during the winter - opposite of natural conditions in Ohio. QHEI scores for the Mahoning River sites ranged between 64.5 and 79.5. These scores are indicative of good to excellent river habitat and the potential to support WWH biological communities.

Fish Community Assessment

Fish communities were assessed at three locations in the Mahoning River (Figure 2, Table 6, Appendix Tables 6 and 7). Sampling locations were selected to assess contributions of contaminants from the former Youngstown Sheet and Tube, Campbell Works - coke plant area.

Fish communities ranged from poor to fair in the Mahoning River. Results from all three fish sampling locations indicated slight improvement from upstream to downstream, with no obvious trends associated with the former Youngstown Sheet and Tube, Campbell Works - coke plant property. IBI scores were in the poor to fair range in the Mahoning River, with scores of 25, 27, and 28, upstream to downstream, respectively. These IBI values did not achieve the ecoregional biocriterion established for Warmwater Habitat (WWH) streams and rivers in Ohio (Table 1). Modified Index of Well-Being scores were in the poor to fair range, with values of 5.3, 5.6, and 7.3. These MIwb scores also did not achieve the ecoregional biocriterion established for Warmwater Habitat (WWH) streams and rivers in Ohio. External anomalies on fish (deformities, eroded fins, lesions, tumors) occurred at elevated levels (6 - 8 %) in the fish communities of the Mahoning River. Along with elevated DELT anomalies, the low number of fish per site and near absence of relatively pollution sensitive suckers, contributed to the poor to fair fish performance. Past Ohio EPA fish collections included samples collected at RM 16.3 during 1994, where the IBI and MIwb scores were 16 and 4.2, respectively. The 2003 results from RM 16.1 (IBI=27, MIwb=5.6) revealed an improvement in the fish community compared with 1994, although results are still considered reflective of poor to fair water and sediment quality.

Macroinvertebrate Community Assessment

The macroinvertebrate communities at three Mahoning River sites were sampled in 2003 using qualitative (multi-habitat composite) and quantitative (artificial substrate) sampling protocols. Results are summarized in Table 7. The ICI metrics with the associated scores for the Erie-Ontario Lake Plain ecoregion and the raw data are attached as Appendix Tables 4 and 5.

The ICI scores for the three Mahoning River sites (RM 16.5, 16.1, and 15.8) were 16, 20, and 26 respectively, all indicative of non-attainment of the WWH use by the macroinvertebrate community. The macroinvertebrate sampling results from the three Mahoning River sites did not show any trends related to the former Campbell Works coke plant property. The lower ICI score from the upstream site at RM 16.5, compared with the two downstream sites, appeared to be related to lower habitat quality. The absence of riffle habitat, the predominance of gravel substrates and lack of cobble contributed to a lack of EPT taxa with 3 taxa collected in the qualitative sample from the site. The adjacent and downstream sites had better macroinvertebrate habitat, and were represented with eight and six qualitative EPT taxa, respectively.

The 2003 sampling results documented a significant improvement in the macroinvertebrate community from previous samples. In 1994, the RM 15.8 site had a poor macroinvertebrate community with an ICI score of 10. The 2003 sample had significantly more total taxa, mayfly and caddisfly taxa, and caddisfly abundance.

Table 3. Exceedences of Ohio Water Quality Standards criteria (OAC 3745-1) for chemical/physical parameters from the Mahoning River and two unnamed tributaries within the study area during 2003.

River Mile	Parameter (value)	
Mahoning River		
16.68	Mercury (0.175J)*	
15.91	None	
15.70	None	
Coke Plant Tribi	utary #1	
0.01	None	
Coke Plant Trib	utary #2	
0.02	Mercury (0.149J)*	

* Exceedence of Human Health nondrinking criterion.

J The analyte was positively identified, but the quantitation was below the reporting limit.

DSW/EAS 2003-12-9

 Table 4.
 Chemical parameters measured above screening levels in sediment samples collected by Ohio EPA from the Mahoning River, October, 2003.
 Contamination levels were determined for parameters using either

 consensus-based sediment quality guidelines (MacDonald et.al. 2000) or ecological data quality levels for RCRA appendix IX constituents (USEPA 1998). Sediment reference values are listed in the Ohio EPA Ecological Risk Assessment Guidance (2003).

Parameter	Mahonin River RM 16.68	Mahonin River RM 16.23	Mahonin River RM 16.23	Mahonin River RM 15.91	Mahonin River RM 15.70	Reference Levels SRVs
Arsenic (mg/kg)	16.8 ^T	13.5 ^T	16.5 ^T	16.2 ^T	22.4 ^T	25
Cadmium (mg/kg)	1.05 ^T	1.20 ^T	1.29 ^T	1.02 ^T	0.964	0.79
Chromium (mg/kg)	90.3 ^T	76.1 ^T	82.8 ^T	82.5 ^T	78 ^T	29
Copper (mg/kg)	92.1 ^T	83.6 ^T	82.3 ^T	84.5 ^T	89.2 ^T	32
Lead (mg/kg)	164 ^P	194 ^P	159 ^P	155 ^P	156 ^P	47
Mercury (mg/kg)	0.198J ^T	1.1 ^P	0.362J ^T	0.313J ^T	1.24 ^P	0.12
Nickel (mg/kg)	48.2 ^T	38.6 ^T	44.8 ^T	46.6 ^T	46.6 ^T	33
Silver (mg/kg)	4.3 ^E	2.65J ^E	3.02J ^E	2.83J ^E	2.75 ^E	0.43
Zinc (mg/kg)	615 ^P	420 ^T	467 ^P	382 ^T	327 ^T	160
2-Butanone (ug/kg)	903J ^E	34.2J	35.7J	<2280	8.44J	_
Ethylbenzene (ug/kg)	<4.82	1.16J ^E	1.04J ^E	<456	<0.738	_
Naphthalene (ug/kg)	<1460	<1580	<1610	546,000 ^P	3390 ^P	_
2-Methylnaphthalene (ug/kg)	<1460	<1580	<1610	5270 ^E	<1170	_
Acenaphthylene (ug/kg)	<1460	<1580	<1610	1470J ^E	1950J ^E	_
Acenaphthene (ug/kg)	<1460	<1580	1670J ^E	2800 ^E	3580 ^E	_
Dibenzofuran (ug/kg)	<1460	<1580	<1610	1700J ^E	1920J ^E	-
Fluorene (ug/kg)	<1460	<1580	<1610	2370J ^P	3930 ^P	-
Phenanthrene (ug/kg)	3690 ^P	5350 ^P	7220 ^P	11,300 ^P	14,600 ^P	-
Anthracene (ug/kg)	1470J ^P	2050J ^P	2710J ^P	3950 ^P	6210 ^P	-
Fluoranthene (ug/kg)	8180 ^P	14,900 ^P	17,900 ^P	17,100 ^P	37,400 ^P	-
Pyrene (ug/kg)	5660 ^P	10,500 ^P	12,300 ^P	12,300 ^P	26,400 ^P	-
Benzo(a)anthracene (ug/kg)	2960 ^P	6680 ^P	7630 ^P	7300 ^P	14,300 ^P	_
Chrysene (ug/kg)	3020 ^P	5290 ^P	6600 ^P	6040 ^P	11,900 ^P	-
Benzo(b)fluoranthene (ug/kg)	4140	8060	8290	7460	15,000 ^E	-
Benzo(k)fluoranthene (ug/kg)	<1460	2460J ^E	4250 ^E	4110 ^E	7760 ^E	-
Benzo(a)pyrene (ug/kg)	2850J ^P	6560 ^P	7520 ^P	6670 ^P	13,800 ^P	-
Indeno(1,2,3-cd)pyrene (ug/kg)	<1460	3140J ^E	2950J ^E	2160J ^E	4220 ^E	-
Benzo (g,h,i)perylene (ug/kg)	<1460	3490 ^E	3080J ^E	2130J ^E	4290 ^E	-
Total PAHs (Calculated) - ug/kg	31,970 ^P	68,480 ^P	82,120 ^P	640,130 ^P	170,650 ^P	-
Cyanide (mg/kg)	$0.875J^{E}$	2.73 ^E	2.67 ^E	3.93 ^E	1.9 ^E	-
PCB - Aroclor 1260 (ug/kg)	148^{T}	116 ^T	53.7	92.4 ^T	122 ^T	

J -T -

The analyte was positively identified, but the quantitation was below the reporting limit (RL). Above Threshold Effect Concentration (below which harmful effects are unlikely to occur; MacDonald *et.al.* 2000). Above Probable Effect Concentration (above which harmful effects are likely to occur; MacDonald *et.al.* 2000).

Р_

Е_ Above Ecological Data Quality Level (USEPA 1998). Table 5. Qualitative Habitat Evaluation Index (QHEI) showing modified and warmwater attributes for the Mahoning River, 2003.

	WWH Attributes	MW	VH Attributes		
	ch tes es tes es tes	High Influence	Moderate Influence		
Key QHEI Components River Gradien Mile QHEI (ft/mile)	No Crannelization or Recovere Boulde r/Cobble/Gravel Substra Sitt Free Substrates Good/Excellent Substrates Moderate/High Sinuosity Extensive.Moderate Cover Fast Current/Eddies Low-Normal Overall Embeddedn Low-Normal Rittle Embeddedn Low-Normal Rittle Embeddedn Total WWH Attributes	Channelized or No Recovery Silt/MuckSubstrates No Sinuosity Sparse/No Cover Max Depth < 40 cm (MD, HM) Total HJ. MMH Attributes	Recovering Channel HeavyModerate Sitt Cover Sand Substrates (Boat) Hardpan Substrate Origin Fair/Poor Development Low Sinuosity Only 1-2 Cover Types Intermittent and Poor Pools No Fast Current HighMod. Overall Embeddedness No Riffle Embeddedness No Riffle	Total M.L. M.M.H.Attributes (MMH H.L+1). ((MMH+1). Ratio	(AMH ML:+1),(AMH+1), Ratio
(18-001) Mahoning River					
Year: 2003					
16.5 64.5 2.55	<i>#</i> # # 4	0	• • • • •	6 0.20	1.40
16.1 77.5 0.10	0 # # # # # # # 8	0	• • •	3 0.11	0.44
15.7 79.5 2.67	<i># # # # # # # #</i> 8	0	• •	2 0.11	0.33

Table 6.Fish community summaries based on pulsed DC electrofishing sampling conducted by
Ohio EPA in the Mahoning River from August and October, 2003. Relative numbers
and weight for the Mahoning River sites are per 1.0 km.

Stream/ River Mile	Mean Number ofSpecies	Total Number Species	Mean Relative Number	Mean Relative Weight(kg)	QHEI	Mean Modified Index of Well-Being	Mean Index of Biotic Integrity	Narrative Evaluation
Mahoning R	iver (2003)							
16.5	11.5	16	78	36.95	64.5	<u>5.3</u> *	<u>25</u> *	Poor
16.1	11.0	16	78	25.22	77.5	<u>5.6</u> *	27*	Poor/Fair
15.7	13.5	20	141	34.32	79.5	7.3*	28*	Fair

Ecoregion Biocriteria: Erie Ontario Lake Plain (EOLP) (Ohio Administrative Code 3745-1-07, Table 7-15)

INDEX	WWH	EWH	MWH ^a
IBI-Boat	40	48	24/30
MIwb - Boat	8.7	9.6	5.8/6.6

^a Modified Warmwater Habitat for channel modified areas/ impounded areas.

* Significant departure from ecoregion biocriterion; poor and very poor results are underlined.

^{ns} Nonsignificant departure from ecoregion biocriterion (≤4 IBI units, ≤0.5 MIwb units).

DSW/EAS 2003-12-9

Table 7.Summary of macroinvertebrate data collected from artificial substrates (quantitative sampling)
and natural substrates (qualitative sampling) in the Mahoning River, 2003.

River	Density	Total	Quantitative	Qualitative	Qualitative		
Mile	Number/ft ²	Taxa	Taxa	Taxa	EPT ^a	ICI	Evaluation
			W	WH Use Desi	gnation		
Mahon	ing River				-		
16.5	303	36	33	14	3	16*	Fair
16.1	258	42	28	23	8	20*	Fair
15.8	364	34	30	17	6	26*	Fair

Ecoregion Biocriteria: Erie Ontario Lake Plain (EOLP)

(Ohio Administrative Code 3745-1-07, Table 7-15)

INDEX	<u>WWH</u>	EWH	<u>MWH</u> [♭]
ICI	34	46	22

^a EPT= total Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) taxa richness, a measure of pollution sensitive organisms.

^b Modified Warmwater Habitat for channel modified areas.

* Significant departure from ecoregional biocriterion; poor and very poor results are underlined.

REFERENCES

- DeShon, J.D. 1995. Development and application of Ohio EPA's invertebrate community index (ICI), *in* W.S. Davis and T. Simon (eds.). Biological assessment and criteria: tools for risk-based planning and decision making. CRC Press/Lewis Publishers, Ann Arbor.
- Fausch, D.O., Karr, J.R. and P.R. Yant. 1984. Regional application of an index of biotic integrity based on stream fish communities. Trans. Amer. Fish. Soc. 113:39-55.
- Karr, J. R. 1991. Biological integrity: A long-neglected aspect of water resource management. Ecological Applications 1(1): 66-84.
- Karr, J.R., K.D. Fausch, P.L. Angermier, P.R. Yant, and I.J. Schlosser. 1986. Assessing biological integrity in running waters: a method and its rationale. Ill. Nat. Hist. Surv. Spec. Publ. 5. 28 pp.
- MacDonald, D., C. Ingersoll, T. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxical.: Vol.39, 20-31.
- Miner R. and D. Borton. 1991. Considerations in the development and implementation of biocriteria, Water Quality Standards for the 21st Century, U.S. EPA, Offc. Science and Technology, Washington, D.C., 115.
- Ohio Environmental Protection Agency. 2003. Ecological risk assessment guidance manual. Feb. 2003. Division of Emergency and Remedial Response, Columbus, Ohio.
- _____ 2001. Sediment sampling guide and methodologies, 2nd edition. Nov. 2001. Division of Surface Water, Columbus, Ohio.
- _____ 1987a. Biological criteria for the protection of aquatic life: Volume I. The role of biological data in water quality assessment. Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, Ohio.
- _____ 1987b. Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, Ohio.
- ____ 1989a. Ohio EPA manual of surveillance methods and quaity assurance practices, updated edition. Division of Environmental Services, Columbus, Ohio.

- _____ 1989b. Addendum to biological criteria for the protection of aquatic life: Users manual for biological field assessment of Ohio surface waters. Division of Water Quality Planning and Assessment, Surface Water Section, Columbus, Ohio.
- _____ 1989c. Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Division of Water Quality Planning and Assessment, Columbus, Ohio.
- 1996. Biological and water quality study of the Mahoning River basin. OEPA Technical Report MAS/1995-12-14. Division of Surface Water, Columbus, Ohio.
- Omernik, J.M. 1987. Ecoregions of the conterminous United States. Ann. Assoc. Amer. Geogr. 77(1): 118-125.
- Rankin, E.T. 1995. The qualitative habitat evaluation index (QHEI). *In* W.S. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Risk-based Planning and Decision Making. CRC Press/Lewis Publishers, Ann Arbor.
- Rankin, E.T. 1989. The qualitative habitat evaluation index (QHEI): rationale, methods, and application. Division of Water Quality Planning and Assessment, Columbus, Ohio.
- Suter, G.W., II. 1993. A critique of ecosystem health concepts and indexes. Environmental Toxicology and Chemistry, 12: 1533-1539.
- United States Environmental Protection Agency (1996). Ecotox thresholds. Office of Solid Waste and Emergency Response. EPA 540/F-95/038. January 1996.
- United States Environmental Protection Agency (1998). Region 5, final technical approach for developing ecological data quality levels for RCRA Appendix IX constituents and other significant contaminants of ecological concern. April, 1998.
- Whittier, T.R., D.P. Larsen, R.M. Hughes, C.M. Rohm, A.L. Gallant, and J.M. Omernik. 1987. The Ohio stream regionalization project: a compendium of results. EPA/600/3-87/025. 66 pp.
- Yoder, C.O. 1989. The development and use of biological criteria for Ohio surface waters. U.S. EPA, Criteria and Standards Div., Water Quality Stds. 21st Century, 1989: 139-146.
- Yoder, C. O. 1991. Answering some concerns about biological criteria based on experiences in Ohio, *in* G. H. Flock (ed.) Water quality standards for the 21st century. Proceedings of a National Conference, U. S. EPA, Office of Water, Washington, D.C.

- Yoder, C.O. 1995. Policy issues and management applications of biological criteria, *in* W.S. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Risk-based Planning and Decision Making. CRC Press/Lewis Publishers, Ann Arbor.
- Yoder, C.O. and E.T. Rankin. 1995. Biological response signatures and the area of degradation value: new tools for interpreting multi-metric data, *in* W.S. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Risk-based Planning and Decision Making. CRC Press/Lewis Publishers, Ann Arbor.

APPENDICES

Appendix Table 1. Results of chemical surface water sampling conducted by Ohio EPA in the Mahoning River on August 19, 2003. Less than values were reported by the lab as not detected at or above the reporting limit.

Stream	Mahoning River	Mahoning River	Mahoning River
River Mile	16.68	15.91	15.70
Date Sampled	08/19/03	08/19/03	08/19/03
Time Sampled	01:35 PM	01:00 PM	06:00 PM
TAL Metals (ug/l)			
Mercurv	< 0.20	< 0.20	< 0.20
Aluminum	161	102	209
Silver	<10.0	<10.0	<10.0
Arsenic	2.23J	2.1J	2.4J
Barium	23.6	27.6	26.3
Bervllium	<10.0	<10.0	<10.0
Calcium	32.100	37.900	35.500
Cadmium	<10.0	<10.0	<10.0
Cobalt	<20.0	<20.0	<20.0
Chromium	<20.0	<20.0	<20.0
Copper	<20.0	<20.0	5 181
Iron	575	458	723
Potassium	4800	5370	5110
Magnesium	7 710	9 210	8 730
Magnesian	92.7	110	115
Sodium	24 300	25 400	25 900
Nickel	24,500 <40.0	<40.0	<40.0
Lead	< <u>+</u> 0:0 3 17I	3 241	3 391
Vanadium	5.17 5	5.24J	5.595 ~10
Zinc	12.21	11 51	13.61
Antimony	<1.0	<1.0	0.6171
Selenium	1.06	0.6451	0.8721
Thallium	0.469	0.0455	0.443
mannann	0.+09	0.400	0.443
Volatile Organic Analytes (u	ıg/l)		
Acetone	<100	<100	<100
Benzene	<5	1.05J	0.819J
Bromobenzene	<5	<5	<5
Bromochloromethane	<5	<5	<5
Bromodichloromethane	<5	<5	<5
Bromoform	<5	<5	<5
Bromomethane	<10	<10	<10
2-Butanone	<100	<100	<100
n-Butylbenzene	<5	<5	<5
sec-Butylbenzene	<5	<5	<5
tert-Butylbenzene	<5	<5	<5
Carbon disulfide	<5	<5	<5
Carbon tetrachloride	<5	<5	<5
Chlorobenzene	<5	<5	<5
Chlorodibromomethane	<5	<5	<5
Chloroethane	<10	<10	<10
2-Chioroethyl vinyl ether	<10	<10	<10
Chlorotorm	0.221J	0.195J	0.222J

Stream	Mahoning River	Mahoning River	Mahoning River
River Mile	16.68	15.91	15.70
Date Sampled	08/19/03	08/19/03	08/19/03
Time Sampled	01:35 PM	01:00 PM	06:00 PM
Volatile Organic Analytes (ug/	1)		
Chloromethane	<10	<10	<10
2-Chlorotoluene	<5	<5	<5
4-Chlorotoluene	<5	<5	<5
1.2-Dibromo-3-chloropropane	<5	<5	<5
1.2-Dibromoethane	<5	<5	<5
Dibromomethane	<5	<5	<5
1,2-Dichlorobenzene	<5	<5	<5
1,3-Dichlorobenzene	<5	<5	<5
1,4-Dichlorobenzene	<5	<5	<5
Dichlorodifluoromethane	<10	<10	<10
1,1-Dichloroethane	<5	<5	<5
1,2-Dichloroethane	<5	<5	<5
1,1-Dichloroethene	<5	<5	<5
cis-1,2-Dichloroethene	<5	<5	<5
trans-1,2-Dichloroethene	<5	<5	<5
1,2-Dichloropropane	<5	<5	<5
1,3-Dichloropropane	<5	<5	<5
2,2-Dichloropropane	<5	<5	<5
cis-1,3-Dichloropropene	<5	<5	<5
trans-1,3-Dichloropropene	<5	<5	<5
1,1-Dichloropropene	<5	<5	<5
Ethylbenzene	<5	<5	<5
n-Hexane	<10	<10	<10
2-Hexanone	<10	<10	<10
Hexachlorobutadiene	<5	<5	<5
Isopropylbenzene	<5	<5	<5
p-Isopropyltoluene	<5	<5	<5
4-Methyl-2-pentanone	<10	<10	<10
Methylene chloride	<5	<5	<5
Naphthalene	<10	0.751J	0.931J
n-Propylbenzene	<5	<5	<5
Styrene	<5	<5	<5
1,1,1,2-Tetrachloroethane	<5	<5	<5
1,1,2,2-Tetrachloroethane	<5	<5	<5
Tetrachloroethene	<5	<5	<5
Toluene	<5	<5	<5
1,2,3-Trichlorobenzene	<5	<5	<5
1,2,4-Trichlorobenzene	<5	<5	<5
1,1,1-Trichloroethane	<5	<5	<5
1,1,2-1richloroethane	<5	<5	<5
I richloroethene	<5	<5	<5
	<10	<10	<10
1,2,3-Trichloropropane	<5	<5	<5
1,2,4-1rimetnyibenzene	<5	<5	<)
1.5.5- I rimeinvipenzene	<0	<2	< 3

Appendix Table 1. Continued.

Stream	Mahoning	Mahoning	Mahoning
	River	River	River
River Mile	16.68	15.91	15.70
Date Sampled	08/19/03	08/19/03	08/19/03
Time Sampled	01:35 PM	01:00 PM	06:00 PM
Volatile Organic Analytes (ug	/l)		
Vinyl acetate	<10	<10	<10
Vinyl chloride	<2.0	<2.0	<2.0
o-Xylene	<5.0	<5.0	<5.0
m-,p-Xylene	<5.0	<5.0	<5.0
Semi-volatile Organic Analyte	es (ug/l)		
Phenol	<5.0	<5.0	<5.0
bis-(2-Chloroethyl) ether	<5.0	<5.0	<5.0
2-Chlorophenol	<5.0	<5.0	<5.0
1,3-Dichlorobenzene	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	<5.0	<5.0	<5.0
Benzyl alcohol	<5.0	<5.0	<5.0
1,2-Dichlorobenzene	<5.0	<5.0	<5.0
2-Methylphenol	<5.0	<5.0	<5.0
3-,4-Methylphenol	<5.0	<5.0	<5.0
bis(2-Chloroisopropyl) ether	<5.0	<5.0	<5.0
N-Nitroso-di-n-propylamine	<5.0	<5.0	<5.0
Hexachloroethane	<5.0	<5.0	<5.0
Nitrobenzene	<5.0	<5.0	<5.0
Isophorone	<5.0	<5.0	<5.0
2-Nitrophenol	<5.0	<5.0	<5.0
2,4-Dimethylphenol	<5.0	<5.0	<5.0
Benzoic acid	<25	<25	<25
bis(2-Chloroethoxy)methane	<5.0	<5.0	<5.0
2,4-Dichlorophenol	<5.0	<5.0	<5.0
1,2,4-Trichlorobenzene	<5.0	<5.0	<5.0
Naphthalene	<5.0	<5.0	<5.0
4-Chloroaniline	<5.0	<5.0	<5.0
Hexachlorobutadiene	<5.0	<5.0	<5.0
4-Chloro-3-methylphenol	<5.0	<5.0	<5.0
2-Methylnaphthalene	<5.0	<5.0	<5.0
Hexachlorocyclopentadiene	<5.0	<5.0	<5.0
2,4,6-Trichlorophenol	<5.0	<5.0	<5.0
2,4,5-Trichlorophenol	<5.0	<5.0	<5.0
2-Chloronaphthalene	<5.0	<5.0	<5.0
2-Nitroaniline	<25	<25	<25
Dimethylphthalate	<5.0	<5.0	<5.0
Acenaphthylene	<5.0	<5.0	<5.0
2,6-Dinitrotoluene	<5.0	<5.0	<5.0
3-Nitroaniline	<25	<25	<25
Acenaphthene	<5.0	<5.0	<5.0
2,4-Dinitrophenol	<25	<25	<25
4-Nitrophenol	<25	<25	<25
Dibenzofuran	<5.0	<5.0	<5.0

Appendix Table 1. Continued.

Stream	Mahoning	Mahoning	Mahoning		
	River	River	River		
River Mile	16.68	15.91	15.70		
Date Sampled	08/19/03	08/19/03	08/19/03		
Time Sampled	01:35 PM	01:00 PM	06:00 PM		
Semi-volatile Organic Analyte	s (ug/l)				
2,4-Dinitrotoluene	<5.0	<5.0	<5.0		
Diethylphthalate	<5.0	<5.0	<5.0		
4-Chlorophenyl-phenyl ether	<5.0	<5.0	<5.0		
Fluorene	<5.0	<5.0	<5.0		
4-Nitroaniline	<25	<25	<25		
4,6-Dinitro-2-methylphenol	<25	<25	<25		
N-Nitrosodiphenylamine	<5.0	<5.0	<5.0		
4-Bromophenyl-phenylether	<5.0	<5.0	<5.0		
Hexachlorobenzene	<5.0	<5.0	<5.0		
Pentachlorophenol	<25	<25	<25		
Phenanthrene	<5.0	<5.0	<5.0		
Anthracene	<5.0	<5.0	<5.0		
Di-N-butylphthalate	<5.0	<5.0	<5.0		
Fluoranthene	<5.0	<5.0	<5.0		
Pyrene	<5.0	<5.0	<5.0		
Butylbenzylphthalate	<5.0	<5.0	<5.0		
3,3'-Dichlorobenzidine	<10	<10	<10		
Benzo(a)anthracene	<5.0	<5.0	<5.0		
Chrysene	<5.0	<5.0	<5.0		
bis(2-Ethylhexyl) phthalate	<5.0	<5.0 <5.0			
Di-n-octylphthalate	<5.0	<5.0	<5.0		
Benzo(b)fluoranthene	<5.0	<5.0	<5.0		
Benzo(k)fluoranthene	<5.0	<5.0	<5.0		
Benzo(a)pyrene	<5.0	<5.0	<5.0		
Indeno(1,2,3-cd)pyrene	<5.0	<5.0	<5.0		
Dibenzo(a,h)anthracene	<5.0	<5.0	<5.0		
Benzo(g,h,i)perylene	<5.0	<5.0	<5.0		
		_			
PCBs (ug/l)					
Aroclor 1016	< 0.50	< 0.50	< 0.50		
Aroclor 1221	< 0.50	< 0.50	< 0.50		
Aroclor 1232	< 0.50	< 0.50	< 0.50		
Aroclor 1242	< 0.50	< 0.50	< 0.50		
Aroclor 1248	< 0.50	< 0.50	< 0.50		
Aroclor 1254	< 0.50	< 0.50	< 0.50		
Aroclor 1260	< 0.50	< 0.50	<0.50		
Pesticides (ug/l)					
4 4'-DDD	<01	~0.1	~0.1		
	<0.1	<0.1	<0.1		
	<0.1	<0.1	<0.1		
Aldrin	<0.1	<0.1	<0.1		
alpha-BHC	<0.05	<0.05	<0.05		

Appendix Table 1. Continued.

Stream	Mahoning River	Mahoning River	Mahoning River
River Mile	16.68	15.91	15.70
Date Sampled	08/19/03	08/19/03	08/19/03
Time Sampled	01:35 PM	01:00 PM	06:00 PM
Pesticides (ug/l)			
beta-BHC	< 0.05	< 0.05	< 0.05
delta-BHC	< 0.05	< 0.05	< 0.05
Dieldrin	< 0.1	< 0.1	< 0.1
Endosulfan I	< 0.05	< 0.05	< 0.05
Endosulfan II	< 0.1	< 0.1	< 0.1
Endosulfan sulfate	< 0.1	< 0.1	< 0.1
Endrin	< 0.1	< 0.1	< 0.1
Endrin aldehyde	< 0.1	< 0.1	< 0.1
gamma-BHC (Lindane)	< 0.05	< 0.05	< 0.05
Heptachlor	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	< 0.05	< 0.05	< 0.05
Methoxychlor	< 0.50	< 0.50	< 0.50
Endrin ketone	< 0.1	< 0.1	< 0.1
alpha Chlordane	< 0.05	< 0.05	< 0.05
gamma Chlordane	< 0.05	< 0.05	< 0.05
Toxaphene	<1.0	<1.0	<1.0

Appendix Table 1. Continued.

J - The analyte was positively identified, but the quantitation was below the reporting limit. < - Not detected at or above the reporting limit (the value reported with the less than symbol).

Stream	Mahoning	Mahoning	Mahoning	Mahoning	Coke Plant	Coke Plant
	River	River	River	River	Trib. #1	Trib. #2
River Mile	16.68	15.91	15.70	15.70	0.01	0.02
Date Sampled	10/06/03	10/06/03	10/07/03	10/07/03	10/06/03	10/07/03
Time Sampled	05:15 PM	03:45 PM	11:20 AM	11:20 AM	06:15 PM	02:00 PM
TAL Metals (ug/l)				Duplicate		
Mercury	0.175J	< 0.10	< 0.10	< 0.10	< 0.10	0.149J
Aluminum	205	414	142	148	<50	<50
Silver	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Arsenic	<2.0	2.29J	<2.0	2.08J	2.22J	<2.0
Barium	24.1	27.8	24.5	24	32	37.4
Beryllium	<0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Calcium	32,000	33,400	32,400	31,900	73,000	69,100
Cadmium	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Cobalt	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chromium	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Copper	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Iron	603	1020	473	475	137	20.5J
Potassium	4430	4700	4660	4560	5010	5330
Magnesium	7,630	8,180	7,860	7670	19,400	9,690
Manganese	91.3	117	84.4	83.2	325	9.6J
Sodium	24,700	26,200	25,700	24,700	69,100	50,000
Nickel	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Lead	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Vanadium	<5.0	<5.0	<5.0	<5.0	<5.0	5.34J
	7.83J	9.58J	/.34J	5./3J	<5.0	<5.0
I hallium	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Antimony	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Selenium Uandraga Tatal	< 3.0	< 3.0	< 3.0	< 3.0	<3.0	< 3.0
Hardness, Total	111,000	117,000	113,000	111,000	262,000	212,000
Volatile Organic Analytes (ug/l)						
Acetone	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Benzene	< 0.125	0.477J	0.413J	0.368J	< 0.125	41
Bromobenzene	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125
Bromochloromethane	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200
Bromodichloromethane	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Bromoform	< 0.54	< 0.54	< 0.54	< 0.54	< 0.54	< 0.54
Bromomethane	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
2-Butanone	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
n-Butylbenzene	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
sec-Butylbenzene	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
tert-Butylbenzene	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Carbon disulfide	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Carbon tetrachloride	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Chlorobenzene	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125
Chlorodibromomethane	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Chloroethane	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
2-Chloroethyl vinyl ether	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Chloroform	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125
Chloromethane	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
2-Chlorotoluene	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125
4-Chlorotoluene	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Dibromomethane	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25

Appendix Table 2. Results of chemical surface water sampling conducted by Ohio EPA in the Mahoning River and two unnamed tributaries on October 6 and 7, 2003.

Appendix Table 2. Continued.

Streem	Mahaning	Mahaning	Mahaning	Mahaning	Coke Plant	Coke Plant
Stream	Divor	Divor	Divon	Divon	COKE Flain Trib #1	Trib #2
Divon Milo	16 69	15 01	15 70	15 70	1110. #1	1110. #2
River Mile	10/06/02	15.91	15.70	15.70	0.01	0.02
Date Sampled	10/00/05	10/00/05	10/07/05	10/07/05	10/00/05	10/07/03
Veletile Organic Analytes (ug/l)	03:13 PM	05:45 PM	11:20 AM	TT:20 AM	00:13 PM	02:00 PM
1 2 Dishlarahanzana	<0.125	<0.125	<0.125	Duplicate	-0.125	<0.125
1,2-Dichlenshansen	< 0.125	< 0.125	< 0.125	<0.125	<0.125	<0.125
1,3-Dichlorabenzene	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.25
Dichland diffusion and the up	< 0.125	<0.125	< 0.125	<0.125	<0.125	<0.125
1 1 Disklare sthere	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
1,1-Dichloroethane	< 0.125	<0.125	< 0.125	<0.125	<0.125	<0.125
1,2-Dichloroethane	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
1,1-Dichloroethene	< 0.50	< 0.50	< 0.50	<0.30	<0.50	<0.50
cis-1,2-Dichloroethene	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
trans-1,2-Dichloroethene	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
1,2-Dichloropropane	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125
1,3-Dichloropropane	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,2-Dichloropropane	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
cis-1,3-Dichloropropene	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
trans-1,3-Dichloropropene	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
I,I-Dichloropropene	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Ethylbenzene	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
2-Hexanone	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Hexachlorobutadiene	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Isopropylbenzene	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
p-Isopropyltoluene	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
4-Methyl-2-pentanone	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Methylene chloride	<0.25	<0.25	<0.25	< 0.25	< 0.25	<0.25
Naphthalene	<0.20	<0.20	0.264J	0.265J	<0.20	0.831J
n-Propylbenzene	< 0.125	<0.125	< 0.125	<0.125	<0.125	<0.125
Styrene	< 0.125	<0.125	< 0.125	<0.125	<0.125	<0.125
1,1,1,2-Tetrachloroethane	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
1,1,2,2-Tetrachloroethane	< 0.125	<0.125	< 0.125	<0.125	<0.125	<0.125
Tetrachloroethene	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	<0.25
Toluene	<0.25	< 0.25	< 0.25	< 0.25	< 0.25	7.8
1,2,3-Trichlorobenzene	< 0.125	<0.125	< 0.125	<0.125	<0.125	<0.125
1,2,4-Trichlorobenzene	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
1,1,1-Trichloroethane	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
1,1,2-Trichloroethane	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Trichloroethene	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Trichlorofluoromethane	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
1,2,3-Trichloropropane	<0.75	<0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,2,4-Trimethylbenzene	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
1,3,5-Trimethylbenzene	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Vinyl acetate	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Vinyl chloride	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
o-Xylene	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	0.902J
m-,p-Xylene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.89J
Semi-volatile Organic Analytes (u	ıg/l)					
Phenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
bis-(2-Chloroethyl) ether	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
2-Chlorophenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
1,3-Dichlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
1,4-Dichlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
Benzyl alcohol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
1,2-Dichlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6

Appendix Table 2. Continued.

River <th< th=""><th>Stream</th><th>Mahoning</th><th>Mahoning</th><th>Mahoning</th><th>Mahoning</th><th>Coke Plant</th><th>Coke Plant</th></th<>	Stream	Mahoning	Mahoning	Mahoning	Mahoning	Coke Plant	Coke Plant
River Nile 16.68 15.91 15.70 10.70 0.00 0.00 Dare Sampled 005:15 PM 03:45 PM 11:20 AM 06:15 PM 02:00 PM Semi-volaille Organic Analytes (ug7) Image Sampled 02:00 PM Image Sampled 00:15 PM 02:00 PM Semi-volaille Organic Analytes (ug7) C.2.5		River	River	River	River	Trib. #1	Trib. #2
Date Sampled 100603 1007/03 1007/03 1007/03 0007/03	River Mile	16.68	15.91	15.70	15.70	0.01	0.02
Time Sampled 03:45 PM 11:20 AM 06:15 PM 02:00 PM Semi-volatile Organic Analytes (ug)) Descure Descure Descure 2:Methylphenol 2.5	Date Sampled	10/06/03	10/06/03	10/07/03	10/07/03	10/06/03	10/07/03
Semi-volatile Organic Analytes (ug/l) Duplicate 2.Methylphenol 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.6 3.4-Methylphenol 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.6 2.5 2.5 2.5 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.6 2.6 2.4 Dichitophynehol 2.5 2.5 2.5 2.5 2.6 2.5 2.5 <t< td=""><td>Time Sampled</td><td>05:15 PM</td><td>03:45 PM</td><td>11:20 AM</td><td>11:20 AM</td><td>06:15 PM</td><td>02:00 PM</td></t<>	Time Sampled	05:15 PM	03:45 PM	11:20 AM	11:20 AM	06:15 PM	02:00 PM
Auchylphenol 2.5 <	Semi-volatile Organic Analytes	(ug/l)			Duplicato		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2-Methylphenol	<2.5	<2.5	<2.5	< 2.5	<2.5	<2.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3- 4-Methylphenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	bis(2-Chloroisopropyl) ether	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
Hexachirorotheme 2.5 2	N-Nitroso-di-n-propylamine	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
Nirobenzene 2.5	Hexachloroethane	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
Isophorone 2.5 <td>Nitrobenzene</td> <td><2.5</td> <td><2.5</td> <td><2.5</td> <td><2.5</td> <td><2.5</td> <td><2.6</td>	Nitrobenzene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Isophorone	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
2.4-Dimethylphenol 2.5 <	2-Nitrophenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 4-Dimethylphenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzoic acid	<12.5	<12.5	<12.5	<12.5	<12.5	<13.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	bis(2-Chloroethoxy)methane	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 4-Dichlorophenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
Introduction2.52.52.52.52.52.6Hexachlorobutadiene2.52.52.52.52.52.52.6Hexachlorobutadiene2.52.52.52.52.52.52.6A Chloro-3-methylphenol2.52.52.52.52.52.52.6Hexachlorocyclopentadiene2.52.52.52.52.52.52.62.4.6 Trichlorophenol2.52.52.52.52.52.52.62.4.5 Trichlorophenol2.52.52.52.52.52.52.62.52.52.52.52.52.52.62.62.52.52.52.52.52.52.62.62.52.52.52.52.52.52.52.62.62.52.52.52.52.52.52.62.62.52.52.52.52.52.62.62.62.52.52.52.52.52.52.62.62.52.52.52.52.52.62.62.62.62.52.52.52.52.52.62.62.42.52.52.52.52.52.62.62.52.52.52.52.52.62.62.62.42.52.52.52.52.52.62.42.52.5	1 2 4-Trichlorobenzene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
AugmaticationCase<	Nanhthalene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
ChristenCas	4-Chloroaniline	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hexachlorobutadiene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-Chloro-3-methylphenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2-Methylpaphthalene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hexachlorocyclopentadiene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 4 6-Trichlorophenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.4.5-Trichlorophenol	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.Chloronaphthalene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2-Nitroaniline	<12.5	<12.5	<12.5	<12.5	<12.5	<13.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dimethylphthalate	<12.5	<12.5	<12.5	<12.5	<12.5	<13.0
AccomputitiveCLS		<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
2.05 Initionation (2.5) $(2$	2 6-Dinitrotoluene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3-Nitroaniline	<12.5	<12.5	<12.5	<12.5	<12.5	<13.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A cenandthene	<12.5	<12.5	<12.5	<12.5	<12.5	<13.0
2,4-Dimbolicities < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 Diethylphthalate < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 < 2.6 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 </td <td>2 A-Dinitrophenol</td> <td><12.5</td> <td><12.5</td> <td><12.5</td> <td><12.5</td> <td><12.5</td> <td><13.0</td>	2 A-Dinitrophenol	<12.5	<12.5	<12.5	<12.5	<12.5	<13.0
Artitopicitor (12.5) (2.5) (2.6) $2,4$ -Dinitrotluene (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.6) 4 -Chlorophenyl-phenyl ether (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.6) 4 -Nitroaniline (12.5) $(12$	4 Nitrophenol	<12.5	<12.5	<12.5	<12.5	<12.5	<13.0
Distribution $\langle 2.5 \rangle$ <	Dibenzofuran	<12.5	<12.5	<12.5	<12.5	<12.5	<13.0
2, + Dintrotoutic (2.5) $($	2 4 Dinitrotoluene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Diathylphthalata	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
Fluorene (2.5)	A-Chlorophenyl-phenyl ether	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
Hubble < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 4-Nitroaniline < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 13.0 4,6-Dinitro-2-methylphenol < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 13.0 N-Nitrosodiphenylamine < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 4-Bromophenyl-phenylether < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 Hexachlorobenzene < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 Pentachlorophenol < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 13.0 Phenanthrene < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 Di-N-butylphthalate < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 Fluoranthene < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 Pyrene < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 Butylbenzylphthalate < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 Benzo(a) anthracene < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 Benzo(a) anthracene < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 Chrysene < 2.5 < 2.5 < 2.5	Fluorene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
4.6-Dinitro-2-methylphenol<12.5<12.5<12.5<12.5<12.5<13.0N-Nitrosodiphenylamine 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.6 4-Bromophenyl-phenylether 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.6 Hexachlorobenzene 2.5 2.5 2.5 2.5 2.5 2.5 2.6 Pentachlorophenol<12.5	1-Nitroaniline	<12.5	<12.5	<12.5	<12.5	<12.5	<13.0
A, or Dimino 2-metuly priction < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 Hexachlorobenzene < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 Pentachlorophenol < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 12.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 Phenanthrene < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 < 2.6 < 2.6 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 < 2.6 < 2.6 < 2.6 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 < 2.6 < 2.6 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 < 2.6 < 2.6 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 < 2.6 < 2.6 < 2.6 < 2.6 < 2.5 < 2.5 < 2.5 < 2.6 < 2.6 < 2.6 < 2.6 < 2.6 < 2.6 < 2.5 < 2.5 < 2.5 < 2.5 < 2.6 < 2.6 < 2.6 < 2.6 < 2.6 < 2.5 < 2.5 <	4 6-Dinitro-2-methylphenol	<12.5	<12.5	<12.5	<12.5	<12.5	<13.0
A-ratiosochphenyl-phenylether $\langle 2.5 \rangle$ </td <td>N-Nitrosodinhenvlamine</td> <td><12.5</td> <td><12.5</td> <td><12.5</td> <td><12.5</td> <td><12.5</td> <td><13.0</td>	N-Nitrosodinhenvlamine	<12.5	<12.5	<12.5	<12.5	<12.5	<13.0
Hexachlorobenzene $\langle 2.5 \rangle$ $\langle 2.$	A Bromonhanyl phanylether	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
Inexaction oberizence $\langle 2.5 \rangle$	4-Bromophenyi-phenyiether	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
Prenaction oppliend < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 125 < 21.5 < 22.6 Anthracene < 25 < 25 < 25 < 225 < 225 < 225 < 22.6 < 22.6 < 22.6 < 22.5 < 22.5 < 22.5 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.5 < 22.5 < 22.5 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.5 < 22.5 < 22.5 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 < 22.6 <td< td=""><td>Pantachlorophonol</td><td><2.5</td><td><2.5</td><td><2.5</td><td><2.5</td><td><2.5</td><td><13.0</td></td<>	Pantachlorophonol	<2.5	<2.5	<2.5	<2.5	<2.5	<13.0
Anthracene $\langle 2.5 \rangle$ <td>Phononthrono</td> <td><12.5</td> <td><12.5</td> <td><12.5</td> <td><12.5</td> <td><12.5</td> <td><13.0</td>	Phononthrono	<12.5	<12.5	<12.5	<12.5	<12.5	<13.0
Anumacene $\langle 2.5 \rangle$ <td>Anthrocono</td> <td><2.5</td> <td><2.5</td> <td><2.5</td> <td><2.5</td> <td><2.5</td> <td><2.0</td>	Anthrocono	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
Dirivoutyphilialate <2.5	Di N butylphthalata	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
Pyrene <2.5 <2.5 <2.5 <2.5 <2.5 <2.6 Butylbenzylphthalate <2.5	Eluorenthene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
Fyrenc <2.5 <2.5 <2.5 <2.5 <2.6 Butylbenzylphthalate <2.5	Durana	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0
Buty roenzy printilate <2.5	r yrelle Butylbonzylphthelete	<2.5	<2.3	<2.3	<2.3	<2.3	<2.0
3,3-Dictionorobenizionile <2.3	2 2' Dichlorobonziding	<2.5	<2.3	<2.3	<2.3	<2.3	<2.0
Defizionalititate <2.3 <2.3 <2.3 <2.3 <2.0 Chrysene <2.5	Banzo(a)anthracana	<2.3 -2 5	<2.3	<2.3	<2.5	<2.3	<2.0
	Chrysene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.0

Appendix Table 2. Continued.

Stream	Mahoning	Mahoning	Mahoning	Mahoning	Coke Plant	Coke Plant
	River	River	River	River	Trib. #1	Trib. #2
River Mile	16.68	15.91	15.70	15.70	0.01	0.02
Date Sampled	10/06/03	10/06/03	10/07/03	10/07/03	10/06/03	10/07/03
Time Sampled	05:15 PM	03:45 PM	11:20 AM	11:20 AM	06:15 PM	02:00 PM
Semi-volatile Organic Analytes (ug/l)			Duplicate		
bis(2-Ethylhexyl) phthalate	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
Di-n-octylphthalate	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
Benzo(b)fluoranthene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
Benzo(k)fluoranthene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
Benzo(a)pyrene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
Indeno(1,2,3-cd)pyrene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
Dibenzo(a,h)anthracene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
Benzo(g,h,i)perylene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.6
PCBs (ug/l)						
Aroclor 1016	<0.25	<0.25	<0.255	<0.25	<0.25	<0.238
Aroclor 1221	<0.25	<0.25	<0.255	<0.25	<0.25	<0.238
Aroclor 1221	<0.25	<0.25	<0.255	<0.25	<0.25	<0.238
Aroclor 1242	<0.25	<0.25	<0.255	<0.25	<0.25	<0.238
Aroclor 1248	< 0.25	< 0.25	< 0.255	<0.25	<0.25	<0.238
Aroclor 1254	< 0.25	< 0.25	< 0.255	< 0.25	< 0.25	<0.238
Aroclor 1260	< 0.25	< 0.25	< 0.255	< 0.25	< 0.25	< 0.238
Pesticides (ug/l)						
4,4'-DDD	< 0.025	< 0.025	< 0.0255	< 0.025	< 0.025	< 0.0238
4,4'-DDE	< 0.025	< 0.025	< 0.0255	< 0.025	< 0.025	< 0.0238
4,4'-DDT	< 0.025	< 0.025	< 0.0255	< 0.025	< 0.025	< 0.0238
Aldrin	< 0.010	< 0.010	< 0.0102	< 0.010	< 0.010	< 0.0095
alpha-BHC	< 0.010	< 0.010	< 0.0102	< 0.010	< 0.010	< 0.0095
beta-BHC	< 0.010	< 0.010	< 0.0102	< 0.010	< 0.010	< 0.0095
delta-BHC	<0.010	<0.010	< 0.0102	<0.010	<0.010	< 0.0095
Dieldrin	<0.025	<0.025	< 0.0255	<0.025	<0.025	<0.0238
Endosulfan I	<0.010	<0.010	< 0.0102	<0.010	<0.010	<0.0095
Endosulfan II Endosulfan sulfata	<0.025	<0.025	<0.0255	<0.025	<0.025	<0.0238
Endosultan sultate	<0.025	<0.025	<0.0255	< 0.025	<0.025	<0.0238
Endrin aldabyda	<0.023	<0.023	<0.0233	< 0.023	<0.023	<0.0238
commo BHC (Lindono)	<0.023	<0.023	< 0.0233	<0.023	<0.023	<0.0238
Hentachlor	<0.010	<0.010	<0.0102	<0.010	<0.010	<0.0095
Heptachlor epoxide	<0.010	<0.010	<0.0102	<0.010	<0.010	<0.0095
Methoxychlor	<0.010	<0.010	<0.0102	<0.010	<0.010	<0.0033
Endrin ketone	< 0.025	< 0.025	< 0.0255	< 0.025	< 0.025	< 0.0238
alpha Chlordane	< 0.010	< 0.010	< 0.0102	< 0.010	< 0.010	< 0.0095
gamma Chlordane	< 0.010	< 0.010	< 0.0102	< 0.010	< 0.010	< 0.0095
Toxaphene	< 0.50	< 0.50	< 0.51	< 0.50	< 0.50	< 0.476
1 I						

J - The analyte was positively identified, but the quantitation was below the reporting limit (RL).

< - Not detected at or above the method detection limit (MDL value reported with the less than symbol).

Appendix Table 3. Results of Ohio EPA sediment sampling conducted in the Mahoning River October 6 and 7, 2003.

Stream	Mahoning River	Mahoning River	Mahoning River	Mahoning River	Mahoning River
River Mile	16.68	16.23	16.23	15.91	15.70
Date Sampled	10/06/03	10/06/03	10/06/03	10/06/03	10/07/03
Time Sampled	05:15 PM	04:40 PM	04:40 PM	03:50 PM	11:20 AM
TAL Metals (mg/kg)			Duplicate		
Mercury	0.198J	1.1	0.362J	0.313J	1.24
Aluminum	12,100	10,200	12,700	9910	8,000
Silver	4.3	2.65J	3.02J	2.83J	2.75
Arsenic	16.8	13.5	16.5	16.2	22.4
Barium	122	106	119	109	97.9
Beryllium	1.49	0.816J	0.944	0.845	0.887
Calcium	28,500B	13,900B	15,200B	14,800B	18,600B
Cadmium	1.05	1.20	1.29	1.02	0.964
Cobalt	6.58	6.56	7.81	7.16	12.8
Chromium	90.3	76.1	82.8	82.5	78
Copper	92.1	83.6	82.3	84.5	89.2
Iron	79,700	53,700	54.700	74.300	166.000
Potassium	1490	1280	1710	1260	769
Magnesium	5740	3070	3590	3340	3090
Manganese	1200	899	1090	1150	1230
Sodium	350	156	185	172	202
Nickel	48.2	38.6	105	16.6	46.6
Lead	16/	194	159	155	156
Vanadium	22.3	21.6	26	21.2	19.1
Zinc	615	420	20 467	382	327
Antimony	0.0321	420 1.431	1 301	1 261	1 1 2 1
Salanium	0.9323	1.455	2.02	1.20J	2.7
Thallium	2.33	-2.07	2.02	1.30	-2.05
Inamum	<1.95	<2.07	<2.03	<3.03	<2.95
Volatile Organic Analytes (ug/	kg)				
Acetone	305J	80.3J	129J	<4560	28.2J
Benzene	<4.82	3.14J	5.01J	<456	< 0.738
Bromobenzene	<4.82	<1.04	<1.03	<456	< 0.738
Bromochloromethane	<4.82	<1.04	<1.03	<456	< 0.738
Bromodichloromethane	<4.82	<1.04	<1.03	<456	< 0.738
Bromoform	<4.82	<1.04	<1.03	<456	< 0.738
Bromomethane	<9.64	<2.07	<2.05	<911	<1.48
2-Butanone	903J	34.2J	35.7J	<2280	8.44J
n-Butylbenzene	61.1	1.35JE	<1.03	<456	1.26J
sec-Butylbenzene	35.7J	1.41JE	1.53JE	<456	1.74J
tert-Butylbenzene	<4.82	2.50JE	<1.03	<456	< 0.738
Carbon disulfide	<4.82	<1.04	<1.03	<456	0.925J
Carbon tetrachloride	<4.82	<1.04	<1.03	<456	< 0.738
Chlorobenzene	<4.82	<1.04	<1.03	<456	< 0.738
Chlorodibromomethane	<4.82	<1.04	<1.03	<456	< 0.738
Chloroethane	<9.64	<2.07	<2.05	<911	<1.48
2-Chloroethyl vinyl ether	<4.82	<1.04	<1.03	<456	< 0.738
Chloroform	<4.82	<1.04	<1.03	<456	< 0.738

Stream	Mahoning River	Mahoning River	Mahoning River	Mahoning River	Mahoning River
River Mile	16.68	16.23	16.23	15.91	15.70
Date Sampled	10/06/03	10/06/03	10/06/03	10/06/03	10/07/03
Time Sampled	05:15 PM	04:40 PM	04:40 PM	03:50 PM	11:20 AM
Volatile Organic Analytes (ug/	kg)		Duplicate		
Chloromethane	<19.3	<4.14	<4.10	<1820	<2.95
2-Chlorotoluene	<4.82	<1.04	<1.03	<456	< 0.738
4-Chlorotoluene	<4.82	<1.04	<1.03	<456	< 0.738
1,2-Dibromo-3-chloropropane	<9.64	<2.07	<2.05	<911	<1.48
1,2-Dibromoethane	<4.82	<1.04	<1.03	<456	< 0.738
Dibromomethane	<4.82	<1.04	<1.03	<456	< 0.738
1,2-Dichlorobenzene	<4.82	<1.04	<1.03	<456	< 0.738
1,3-Dichlorobenzene	<4.82	<1.04	<1.03	<456	< 0.738
1,4-Dichlorobenzene	6.45J	2.45JE	2.76JE	<456	< 0.738
Dichlorodifluoromethane	<9.64	<2.07	<2.05	<911	<1.48
1,1-Dichloroethane	<9.64	<2.07	<2.05	<911	<1.48
1.2-Dichloroethane	<4.82	<1.04	<1.03	<456	< 0.738
1.1-Dichloroethene	<4.82	<1.04	<1.03	<456	< 0.738
cis-1.2-Dichloroethene	<4.82	<1.04	<1.03	<456	< 0.738
trans-1.2-Dichloroethene	<4.82	<1.04	<1.03	<456	< 0.738
1.2-Dichloropropane	<4.82	<1.04	<1.03	<456	< 0.738
1.3-Dichloropropane	<4.82	<1.04	<1.03	<456	< 0.738
2.2-Dichloropropane	<4.82	<1.04	<1.03	<456	< 0.738
cis-1.3-Dichloropropene	<4.82	<1.04	<1.03	<456	< 0.738
trans-1.3-Dichloropropene	<4.82	<1.04	<1.03	<456	< 0.738
1.1-Dichloropropene	<4.82	<1.04	<1.03	<456	< 0.738
Ethylbenzene	<4.82	1.16J	1.04J	<456	< 0.738
2-Hexanone	<24.1	<5.18	<5.13	<2280	<3.69
Hexachlorobutadiene	<4.82	<1.04	<1.03	<456	< 0.738
Isopropylbenzene	10.2J	<1.04	<1.03	<456	1.38J
p-Isopropyltoluene	10.6J	1.13JE	2.67JE	<456	0.83J
4-Methyl-2-pentanone	<24.1	<5.18	<5.13	<2280	<3.69
Methylene chloride	<9.64	<2.07	<2.05	<911	<1.48
Naphthalene	109	279	406	95.800	119
n-Propylbenzene	21.0J	<1.04	<1.03	<456	0.825J
Styrene	<4.82	<1.04	<1.03	<456	< 0.738
1,1,1,2-Tetrachloroethane	<4.82	<1.04	<1.03	<456	< 0.738
1,1,2,2-Tetrachloroethane	<4.82	<1.04	<1.03	<456	< 0.738
Tetrachloroethene	<4.82	<1.04	<1.03	<456	< 0.738
Toluene	<4.82	<1.04	1.51J	<456	< 0.738
1,2,3-Trichlorobenzene	<4.82	<1.04	<1.03	<456	< 0.738
1,2,4-Trichlorobenzene	24.3J	<1.04	<1.03	<456	< 0.738
1,1,1-Trichloroethane	<4.82	<1.04	<1.03	<456	< 0.738
1.1.2-Trichloroethane	<4.82	<1.04	<1.03	<456	< 0.738
Trichloroethene	<4.82	<1.04	<1.03	<456	<0.738
Trichlorofluoromethane	<9.64	<2.07	<2.05	<911	<1.48
1,2,3-Trichloropropane	<6.17	<1.32	<1.31	<583	< 0.944
1,2,4-Trimethylbenzene	12.1J	1.95JE	2.44JE	<456	0.852J
1.3.5-Trimethylbenzene	<4.82	2.17JE	2.48JE	<456	< 0.738

Appendix Table 3. Continued.

Stream	Mahoning River	Mahoning River	Mahoning River	Mahoning River	Mahoning River
River Mile	16.68	16.23	16.23	15.91	15.70
Date Sampled	10/06/03	10/06/03	10/06/03	10/06/03	10/07/03
Time Sampled	05:15 PM	04:40 PM	04:40 PM	03:50 PM	11:20 AM
Volatile Organic Analytes (ug/l	kg)		Duplicate		
Vinyl acetate	<9.64	<2.07	<2.05	<911	<1.48
Vinyl chloride	<9.64	<2.07	<2.05	<911	<1.48
o-Xylene	<4.82	<1.04	<1.03	<456	0.749J
mp-Xvlene	5.97J	1.10J	1.24J	<456	0.889J
1					
Semi-volatile Organic Analytes	s (ug/kg)				
Phenol	<1460	<1580	<1610	<1380	<1170
bis-(2-Chloroethyl) ether	<1460	<1580	<1610	<1380	<1170
2-Chlorophenol	<1460	<1580	<1610	<1380	<1170
1,3-Dichlorobenzene	<1460	<1580	<1610	<1380	<1170
1,4-Dichlorobenzene	<1460	<1580	<1610	<1380	<1170
Benzyl alcohol	<1460	<1580	<1610	<1380	<1170
1,2-Dichlorobenzene	<1460	<1580	<1610	<1380	<1170
2-Methylphenol	<1460	<1580	<1610	<1380	<1170
3-,4-Methylphenol	<1460	<1580	<1610	<1380	<1170
bis(2-Chloroisopropyl) ether	<1460	<1580	<1610	<1380	<1170
N-Nitrosodipropylamine	<1460	<1580	<1610	<1380	<1170
Hexachloroethane	<1460	<1580	<1610	<1380	<1170
Nitrobenzene	<1460	<1580	<1610	<1380	<1170
Isophorone	<1460	<1580	<1610	<1380	<1170
2-Nitrophenol	<1460	<1580	<1610	<1380	<1170
2,4-Dimethylphenol	<1460	<1580	<1610	<1380	<1170
Benzoic acid	<5830	<6310	<6450	<5540	<4670
bis(2-Chloroethoxy)methane	<1460	<1580	<1610	<1380	<1170
2,4-Dichlorophenol	<1460	<1580	<1610	<1380	<1170
1,2,4-Trichlorobenzene	<1460	<1580	<1610	<1380	<1170
Naphthalene	<1460	<1580	<1610	546,000	3390
4-Chloroaniline	<1460	<1580	<1610	<1380	<1170
Hexachlorobutadiene	<1460	<1580	<1610	<1380	<1170
4-Chloro-3-methylphenol	<1460	<1580	<1610	<1380	<1170
2-Methylnaphthalene	<1460	<1580	<1610	5270	<1170
Hexachlorocyclopentadiene	<1460	<1580	<1610	<1380	<1170
2,4,6-Trichlorophenol	<1460	<1580	<1610	<1380	<1170
2,4,5-Trichlorophenol	<1460	<1580	<1610	<1380	<1170
2-Chloronaphthalene	<1460	<1580	<1610	<1380	<1170
2-Nitroaniline	<5830	<6310	<6450	<5540	<4670
Dimethylphthalate	<1460	<1580	<1610	<1380	<1170
Acenaphthylene	<1460	<1580	<1610	1470J	1950J
2,6-Dinitrotoluene	<1460	<1580	<1610	<1380	<1170
3-Nitroaniline	<5830	<6310	<6450	<5540	<4670
Acenaphthene	<1460	<1580	1670J	2800	3580
2,4-Dinitrophenol	<5830	<6310	<6450	<5540	<4670
4-Nitrophenol	<5830	<6310	<6450	<5540	<4670
Dibenzofuran	<1460	<1580	<1610	1700J	1920J

Appendix Table 3. Continued.

Stream	Mahoning River	Mahoning River	Mahoning River	Mahoning River	Mahoning River
River Mile	16.68	16.23	16.23	15.91	15.70
Date Sampled	10/06/03	10/06/03	10/06/03	10/06/03	10/07/03
Time Sampled	05:15 PM	04:40 PM	04:40 PM	03:50 PM	11:20 AM
Semi-volatile Organic Analyt	es (ug/kg)		Duplicate		
2,4-Dinitrotoluene	<1460	<1580	<1610	<1380	<1170
Diethylphthalate	<1460	<1580	<1610	<1380	<1170
4-Chlorophenyl-phenyl ether	<1460	<1580	<1610	<1380	<1170
Fluorene	<1460	<1580	<1610	2370J	3930
4-Nitroaniline	<5830	<6310	<6450	<5540	<4670
4,6-Dinitro-2-methylphenol	<5830	<6310	<6450	<5540	<4670
N-Nitrosodiphenylamine	<1460	<1580	<1610	<1380	<1170
4-Bromophenyl-phenylether	<1460	<1580	<1610	<1380	<1170
Hexachlorobenzene	<1460	<1580	<1610	<1380	<1170
Pentachlorophenol	<5830	<6310	<6450	<5540	<4670
Phenanthrene	3,690	5,350	7220	11,300	14,600
Anthracene	1470J	2050J	2710J	3950	6210
Di-N-butylphthalate	<1460	<1580	<1610	<1380	<1170
Fluoranthene	8,180	14,900	17,900	17,100	37,400
Pyrene	5,660	10,500	12,300	12,300	26,400
Butylbenzylphthalate	<1460	<1580	<1610	<1380	<1170
3.3'-Dichlorobenzidine	<2920	<3160	<3230	<2770	<2340
Benzo(a)anthracene	2,960	6,680	7630	7300	14,300
Chrysene	3.020	5.290	6600	6040	11.900
bis(2-Ethylhexyl) phthalate	<1460	<1580	<1610	<1380	<1170
Di-n-octylphthalate	<1460	<1580	<1610	<1380	<1170
Benzo(b)fluoranthene	4,140	8,060	8290	7460	15,000
Benzo(k)fluoranthene	<1460	2460J	4250	4110	7760
Benzo(a)pyrene	2850J	6,560	7520	6670	13,800
Indeno(1,2,3-cd)pyrene	<1460	3140J	2950J	2160J	4220
Dibenzo(a,h)anthracene	<1460	<1580	<1610	<1380	<1170
Benzo(g,h,i)perylene	<1460	3490	3080J	2130J	4290
r CDS (ug/Kg)	-157	16.0	-167	15.0	.11.0
Aroclor 1016	<15./	<16.9	<16./	<15.0	<11.9
Aroclor 1221	<15./	<16.9	<16./	<15.0	<11.9
Aroclor 1232	<15.7	<16.9	<16./	<15.0	<11.9
Aroclor 1242	<15./	<10.9	<10./	<15.0	<11.9
Aroclor 1248	<15./	<16.9	<16./	<15.0	<11.9
Aroclor 1254	<15.7	<10.9	<10./	<15.0	<11.9
Aroclor 1260	148	116	53.7	92.4	122
Pesticides (ug/kg)					
alpha-BHC	<7.60	<4.10	<4.05	<7.26	<11.5
beta-BHC	<7.60	<4.10	<4.05	<7.26	<11.5
delta-BHC	<7.60	<4.10	<4.05	<7.26	<11.5
gamma-BHC (Lindane)	<7.60	<4.10	<4.05	<7.26	<11.5
Heptachlor	<7.60	<4.10	<4.05	<7.26	<11.5

Appendix Table 3. Continued.

Stream	Mahoning River	Mahoning River	Mahoning River	Mahoning River	Mahoning River
River Mile	16.68	16.23	16.23	15.91	15.70
Date Sampled	10/06/03	10/06/03	10/06/03	10/06/03	10/07/03
Time Sampled	05:15 PM	04:40 PM	04:40 PM	03:50 PM	11:20 AM
Pesticides (ug/kg)			Duplicate		
Aldrin	<7.60	<4.10	<4.05	<7.26	<11.5
Heptachlor epoxide	<7.60	<4.10	<4.05	<7.26	<11.5
Endosulfan I	<7.60	<4.10	<4.05	<7.26	<11.5
Dieldrin	<15.7	<8.45	<8.35	<15.0	<23.7
4,4'-DDE	<15.7	<8.45	<8.35	<15.0	<23.7
Endrin	<15.7	<8.45	<8.35	<15.0	<23.7
Endosulfan II	<15.7	<8.45	<8.35	<15.0	<23.7
4,4'-DDD	<15.7	<8.45	<8.35	<15.0	<23.7
Endosulfan sulfate	<15.7	<8.45	<8.35	<15.0	<23.7
4,4'-DDT	<15.7	<8.45	<8.35	<15.0	<23.7
Methoxychlor	<15.7	<8.45	<8.35	<15.0	<23.7
Endrin ketone	<15.7	<8.45	<8.35	<15.0	<23.7
Endrin aldehyde	<15.7	<8.45	<8.35	<15.0	<23.7
alpha Chlordane	<7.60	<4.10	<4.05	<7.26	<11.5
gamma Chlordane	<7.60	<4.10	<4.05	<7.26	<11.5
Toxaphene	<317	<171	<169	<303	<481
Other					
Percent Solids Diesel Range Organics (ug/kg) Gasoline Range Organics (ug/kg) Cyanide (mg/kg)	51.8 3,580,000 2560 0.875J	48.3 651,000 99.4J 2.73	48.8 546,000 94.7J 2.67	54.9 758,000 349 3.93	67.8 619,000 <66.4 1.9

Appendix Table 3. Continued.

B - Analyte present in method blank.

J - The analyte was positively identified, but the quantitation was below the reporting limit (RL).

E - Estimated concentration due to sample matrix interference.

< - Not detected at or above the method detection limit (MDL value reported with the less than symbol).

Appendix Table 4. Invertebrate Community Index (ICI) scores for the Mahoning River, 2003.

	Drainage		Νι	umber of		Percent:							
River Mile	Area (sq mi)	Total Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Organisms	Qual. EPT	Eco- region	ICI
Mahoning	River (18-0	001)											
Year: 200	3												
16.50	1020	33(4)	2(0)	3(2)	13(6)	3.5(2)	1.3(0)	0.1(2)	94.8(0)	60.8(0)	3(0)	3	16
16.10	1022	28(4)	2(0)	2(2)	13(6)	18.4(4)	2.9(0)	0.3(2)	78.3(0)	45.6(0)	8(2)	3	20
15.80	1023	30(4)	3(2)	5(4)	12(6)	4.8(2)	17.1(4)	0.4(2)	77.5(0)	55.1(0)	6(2)	3	26

Appendix Table 5

Macroinvertebrate taxa (qualitative and quantitative) collected in the Mahoning River, 2003.

Ohio EPA/DSW Ecological Assessment Section Macroinvertebrate Collection

Collection Date: 10/06/2003 River Code: 18-001 RM: 16.50 Site: Mahoning River

Taxa	T.	0 15	Tax	a		
Code	Taxa	Quant/Qu	al <u>Coc</u>	le Ta	ха	Quant/Qu
01320	Hydra sp	27				
01801	Turbellaria	118 +				
03360	Plumatella sp	1 +				
03600	Oligochaeta	713 +				
04615	Actinobdella inequiannulata	2 +				
04964	Mooreobdella microstoma	2 +				
05800	Caecidotea sp	5				
06810	Gammarus fasciatus	173 +				
13400	Stenacron sp	47				
13561	Stenonema pulchellum	+				
16700	Tricorythodes sp	б +				
22300	Argia sp	4 +				
51100	poss. Cernotina sp or Polycentropus sp	1				
52200	Cheumatopsyche sp	17				
52520	Hydropsyche bidens	2				
52580	Hydropsyche valanis	+				
63300	Hydroporus sp	+				
77100	Ablabesmyia sp	5				
77500	Conchapelopia sp	5				
77750	Hayesomyia senata or Thienemannimyia norena	47 +				
80420	Cricotopus (C.) bicinctus	5				
81231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	21				
81240	Nanocladius (N.) distinctus	82				
81825	Rheocricotopus (Psilocricotopus) robacki	5				
83050	Dicrotendipes lucifer	4				
84450	Polypedilum (Uresipedilum) flavum	2				
84460	Polypedilum (P.) fallax group	2				
84540	Polypedilum (Tripodura) scalaenum group	5				
85625	Rheotanytarsus sp	2				
87540	Hemerodromia sp	8				
93200	Hydrobiidae	63 +				
95100	Physella sp	2				
96120	Menetus (Micromenetus) dilatatus	4				
96900	Ferrissia sp	117				
97601	Corbicula fluminea	2 +				
	Sphaoriidae	16				

Ohio EPA/DSW Ecological Assessment Section Macroinvertebrate Collection

Collection Date: 10/06/2003 River Code: 18-001 RM: 16.10 Site: Mahoning River

T						0		
Taxa Code	Taxa	Quant/G)ual	Taxa Code	Taxa		Qua	ant/Qual
00401	Spongillidae		+					
01320	Hydra sp	51		No. Qu	antitative Taxa:	28 T	otal Taxa:	42
01801	Turbellaria	28	+	No Ou	alitativo Tava:	~0 92	ICI	
03360	Plumatella sp	6		NU. Qu		20		20
03600	Oligochaeta	351	+	Numbe	er of Organisms:	1292	Qual EPT:	8
04964	Mooreobdella microstoma		+					
05800	Caecidotea sp		+					
06810	Gammarus fasciatus	38	+					
08200	Orconectes sp		+					
11120	Baetis flavistriga		+					
11130	Baetis intercalaris		+					
13400	Stenacron sp	197	+					
13521	Stenonema femoratum		+					
16700	Tricorythodes sp	41	+					
22300	Argia sp		+					
25510	Stylogomphus albistylus		+					
52200	Cheumatopsyche sp	32	+					
52560	Hydropsyche orris		+					
52580	Hydropsyche valanis	5	+					
68901	Macronychus glabratus	1						
74501	Ceratopogonidae	4						
77750	Hayesomyia senata or Thienemannimyia norena	178						
77800	Helopelopia sp	9						
80420	Cricotopus (C.) bicinctus	4						
81231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	60						
81240	Nanocladius (N.) distinctus	38						
81825	Rheocricotopus (Psilocricotopus) robacki	4						
84450	Polypedilum (Uresipedilum) flavum	4	+					
84460	Polypedilum (P.) fallax group	9						
84470	Polypedilum (P.) illinoense	4						
84540	Polypedilum (Tripodura) scalaenum group	26						
84888	Xenochironomus xenolabis		+					
85625	Rheotanytarsus sp	4						
87540	Hemerodromia sp	2						
93200	Hydrobiidae	11	+					
95100	Physella sp	1						
96264	Planorbella (Pierosoma) pilsbryi	1						
96900	Ferrissia sp	182						
97601	Corbicula fluminea		+					
97710	Dreissena polymorpha		+					
98200	Pisidium sp		+					
98600	Sphaerium sp	1						

Ohio EPA/DSW Ecological Assessment Section Macroinvertebrate Collection

Collection Date: 10/07/2003 River Code: 18-001 RM: 15.80 Site: Mahoning River

Taxa			Таха		
Code	Taxa	Quant/Qua	al Code	Taxa	Quant/Qual
01320	Hydra sn	12			
01801	Turbellaria	10 +			
03360	Plumatella sp	2 +			
03600	Oligochaeta	385 +			
04964	Mooreobdella microstoma	+			
06810	Gammarus fasciatus	34 +			
11130	Baetis intercalaris	3			
13400	Stenacron sp	47 +			
16700	Tricorythodes sp	38 +			
22300	Argia sp	1 +			
48410	Corydalus cornutus	1			
52200	Cheumatopsyche sp	194 +			
52520	Hydropsyche bidens	+			
52530	Hydropsyche depravata group	1			
52540	Hydropsyche dicantha	10 +			
52560	Hydropsyche orris	14			
52580	Hydropsyche valanis	93 +			
74100	Simulium sp	1			
77500	Conchapelopia sp	28			
77750	Hayesomyia senata or Thienemannimyia norena	120 +			
80410	Cricotopus (C.) sp	20			
80420	Cricotopus (C.) bicinctus	16 +			
80430	Cricotopus (C.) tremulus group	12			
81210	Nanocladius (N.) alternantherae	4			
81231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	56			
81240	Nanocladius (N.) distinctus	104			
81825	Rheocricotopus (Psilocricotopus) robacki	36			
84450	Polypedilum (Uresipedilum) flavum	+			
85625	Rheotanytarsus sp	8			
87540	Hemerodromia sp	58			
93200	Hydrobiidae	13 +			
96900	Ferrissia sp	499			
97601	Corbicula fluminea	+			
98001	Sphaeriidae	1			
No. Q No. Q Numb	Quantitative Taxa: 30 Total 7 Qualitative Taxa: 17 per of Organisms: 1821 Qual 1	Faxa: 34 ICI: 26 EPT: 6	_		

Appendix Table 6. MIwb and IBI scores for the Mahoning River, 2003.

				_	Num	ber of		Percent of Individuals					_	Rel.No. minus			
River Mile	Туре	Date	Drainage area (sq mi)	Total species	Sunfish species	Sucker species	Intolerant species	Rnd-bodiec suckers	I Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(1.0 km)	IBI	Modified Iwb
Mahoni Year:	ng Rivo 2003	er - (18-00)1)														
16.50	Α	08/19/2003	3 1020	9(1)	4(5)	0(1)	0(1)	0(1)	0(1)	31(1)	12(5)	5(1)	81(5)	4.8(3)	58(1) *	26	5.2
16.50	А	10/06/2003	3 1020	10(3)	5(5)	0(1)	0(1)	0(1)	0(1)	39(1)	31(1)	11(5)	47(3)	11.1(1)	44(1) *	24	5.4
16.10	А	08/19/2003	3 1022	11(3)	4(5)	1(1)	0(1)	0(1)	6(1)	13(5)	17(3)	13(5)	60(5)	7.7(1)	90(1) *	32	7.0
16.10	А	10/06/2003	3 1022	8(1)	4(5)	0(1)	0(1)	0(1)	0(1)	50(1)	27(3)	0(1)	50(3)	3.8(3)	26(1) *	22	4.3
15.70	А	08/19/2003	3 1023	11(3)	5(5)	0(1)	0(1)	0(1)	1(1)	18(3)	18(3)	7(3)	76(5)	8.2(1)	122(1) *	28	7.9
15.70	А	10/07/2003	3 1023	12(3)	3(3)	2(1)	1(1)	1(1)	3(1)	10(5)	15(5)	4(1)	79(5)	7.5(1)	120(1) *	28	6.6

• - IBI is low end adjusted.

* - < 200 Total individuals in sample

** - < 50 Total individuals in sample

Appendix Table 7. Fish Species List

Page 1

		P F								1 480 1
River Code: 18-001 River Mile: 16.50	Stream Locat	m: ion:	Maho	ning R	liver			Sample Date Ra	Date: 2 nge: 08/	003 /19/2003
Time Fished: 4290 sec	Drain	age:	1020.0	sa mi				Т	'hru: 10/	/06/2003
Dist Fished: 1.00 km	Basin	: Ma	honing	g River		No of Pa	isses: 2	Sampler	Type: A	L
Species Name / ODNR status	IBI Grp	Feed Guild	Breed Guild	d Tol	# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
Common Carp	G	0	М	Т	10	10.00	12.82	29.33	79.36	2,932.50
Goldfish	G	0	М	Т	2	2.00	2.56	0.74	1.99	367.50
Golden Shiner	Ν	Ι	М	Т	1	1.00	1.28	0.00	0.01	3.00
Spotfin Shiner	Ν	I	Μ		2	2.00	2.56	0.02	0.05	8.50
Bluntnose Minnow	Ν	0	С	Т	3	3.00	3.85	0.01	0.03	3.33
Common Carp X Goldfish	G	0		Т	1	1.00	1.28	1.90	5.14	1,900.00
Channel Catfish	F		С		1	1.00	1.28	1.65	4.47	1,650.00
Blackstripe Topminnow		Ι	М		1	1.00	1.28	0.01	0.02	6.00
Brook Silverside		Ι	М	М	1	1.00	1.28	0.00	0.01	2.00
White Bass	F	Ρ	М		1	1.00	1.28	0.01	0.03	10.00
White Crappie	S	I.	С		5	5.00	6.41	0.28	0.75	55.40
Largemouth Bass	F	С	С		4	4.00	5.13	0.05	0.14	12.75
Warmouth Sunfish	S	С	С		1	1.00	1.28	0.02	0.06	23.00
Green Sunfish	S	Ι	С	Т	10	10.00	12.82	0.49	1.33	49.20
Bluegill Sunfish	S	Ι	С	Р	6	6.00	7.69	0.22	0.58	36.00
Pumpkinseed Sunfish	S	Ι	С	Р	25	25.00	32.05	2.07	5.61	82.89
Green Sf X Pumpkinseed					3	3.00	3.85	0.15	0.41	50.33
Yellow Perch			М		1	1.00	1.28	0.01	0.03	11.00
	Mile T	otal			78	78.00		36.95		
	Numb	er of	Specie	s	16					
	Numb	er of	Hybrid	s	2					

Appendix Table 7. Fish Species List

Page 2

2003 8/19/2003 0/06/2003 A
8/19/2003 0/06/2003 A
0/06/2003 A
A
• ()
Ave(gm) Weight
96.83
295.00
2,153.29
516.00
6.00
1,303.80
103.00
10.50
41.25
28.00
26.33
46.29
18.43
34.43
48.00
19.00
10.00

Appendix	Table 7.	Fish S	pecies	List

Page 3

		-				-				-
River Code: 18-001	Stream	n:	Maho	ning H	River			Sample	Date: 2	003
River Mile: 15.70	Locati	on:						Date Ra	nge: 08/	/19/2003
Time Fished: 2577 sec	Draina	age:	1023.0	sq m	i			Т	[°] hru: 10	/07/2003
Dist Fished: 1.00 km	Basin:	Ma	honing	g Rive	r	No of Pa	asses: 2	Sampler	Type: A	۱.
Species Name / ODNR status	IBI I Grp (Feed Guild	Breed Guild	t Tol	# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
Gizzard Shad		0	М		10	10.00	7.09	0.72	2.11	72.40
Muskellunge [S]	F	Р	М		1	1.00	0.71	4.65	13.55	4,650.00
Northern Hog Sucker	R	Ι	S	Μ	1	1.00	0.71	0.29	0.84	288.00
White Sucker	W	0	S	Т	1	1.00	0.71	0.47	1.38	472.00
Common Carp	G	0	М	Т	7	7.00	4.96	18.50	53.91	2,642.86
Goldfish	G	0	М	Т	4	4.00	2.84	0.99	2.87	246.25
River Chub	Ν	Ι	Ν	Ι	1	1.00	0.71	0.03	0.09	32.00
Spotfin Shiner	Ν	Т	М		30	30.00	21.28	0.08	0.24	2.70
Bluntnose Minnow	Ν	0	С	Т	1	1.00	0.71	0.00	0.01	3.00
Channel Catfish	F		С		1	1.00	0.71	1.13	3.28	1,125.00
Yellow Bullhead		Т	С	Т	2	2.00	1.42	0.35	1.01	174.00
White Bass	F	Р	М		2	2.00	1.42	0.12	0.34	59.00
White Crappie	S	Т	С		11	11.00	7.80	0.72	2.11	65.73
Black Crappie	S	Т	С		1	1.00	0.71	0.06	0.19	64.00
Smallmouth Bass	F	С	С	Μ	1	1.00	0.71	0.25	0.72	248.00
Largemouth Bass	F	С	С		3	3.00	2.13	1.35	3.93	449.67
Green Sunfish	S	Т	С	Т	5	5.00	3.55	0.22	0.64	43.80
Bluegill Sunfish	S	Т	С	Р	23	23.00	16.31	0.72	2.11	31.48
Pumpkinseed Sunfish	S	Т	С	Р	35	35.00	24.82	1.81	5.29	51.84
Walleye	F	Ρ	S		1	1.00	0.71	1.85	5.39	1,850.00
Mile Total					141	141.00		34.32		
	Numbe	er of	Specie	s	20					
	Numbe	ər of	Hybrid	s	0					