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CHAPTER 13

STATISTICS FOR GROUND WATER QUALITY COMPARISONS

The statistical evaluation of data resulting from the chemical analysis of ground water is required
by Ohio's regulations for Part B permitted hazardous waste land disposal facilities [OAC 3745-54-
97(G)], Part A permitted hazardous waste land disposal facilities [OAC 3745-65-93], and permitted
municipal solid waste [OAC 3745-27-10(C)(6)], residual waste [OAC 3745-30-08(C)(5)], and
industrial waste landfills [OAC 3745-29-10(C)(6)].  Additionally, statistics can be employed for
wastewater facilities (including non-toxic flyash, bottom ash, foundry sand and coal storage piles)
and in corrective actions at regulated and unregulated hazardous waste sites.  This chapter is
intended to address only those statistical evaluations performed for Part B permitted hazardous
waste land disposal facilities, permitted municipal solid, residual, and industrial waste landfills, and
wastewater facilities.  This chapter pertains to Part A permitted hazardous waste land disposal
facilities only if the owner/operator has entered into an agreement with the Director of Ohio EPA to
utilize methods identified in OAC 3745-54-97 in place of those specified in OAC 3745-65-93.
Regarding the methods mandated by OAC 3745-65-93 (i.e., the Student's T-test and the Average
Replicate Test), the reader is referred to the U.S. EPA's Technical Enforcement Guidance
Document (U.S. EPA, 1986). 

Statistical analyses are used to compare the chemical ground water quality of a monitored zone
downgradient of the waste management unit with either: 1) a standard set in a permit, 2)  the
chemical ground water quality from a background (or upgradient) well screened in the same
monitored zone and unaffected by facility operations, or 3) historic concentrations from the same
well.  These comparisons provide reliable determinations as to whether a waste management unit
has influenced the quality of the ground water.  Statistics can also be used to define the extent of
ground water contamination.  If no statistically significant difference is observed between a
downgradient well and background, the well is statistically considered beyond the plume of
contamination.
 
U.S. EPA has issued the Guidance Document on the Statistical Analysis of Ground Water
Monitoring Data at RCRA Facilities, (U.S. EPA, 1989) and an addendum to the same document
(U.S. EPA, 1992).  The Ohio EPA recommends the methods outlined in the U.S. EPA guidance.
Additionally, U.S. EPA has developed a data management tool designed to facilitate the storage,
analysis and reporting of data collected through ground water monitoring programs.  The statistical
portion of the program incorporates the most frequently used statistical methods for ground water
monitoring.  This tool is called the Ground Water Information Tracking System with Statistical
Analysis Capability (GRITS/STAT or GRITS).

This chapter supplements and clarifies the U.S. EPA's guidance with regard to the number of
different statistical methods required per facility, independent samples, determination of a
background data set, initial year sampling frequency, and corrections for seasonal fluctuations.  In
addition, fixed and variable requirements or assumptions of the most frequently used statistical
methods are discussed. These assumptions include minimum sample size, distribution, variance,
treatment of non-detects, and comparison and experimentwise errors. Finally, recommendations
for submittals of statistical information are outlined.  It is recommended that the U.S. EPA guidance
documents be reviewed before reading this chapter.
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BASIC STATISTICAL ASSUMPTIONS

Whether starting from scratch with a new database or building on an established database, the first
steps in determining whether a statistically significant difference has occurred should be the same.
Before choosing the statistical method, an evaluation must be made as to whether the available
site-specific data meet a few basic assumptions necessary for a particular test to perform with the
greatest accuracy and power, power being the probability that the test will correctly identify
contamination when it is present.  Assumptions basic to all methods include independence of
samples,  determination of the background data set, sampling frequency, and corrections for
seasonality.  

INDEPENDENT SAMPLES

Statistical analysis is based on the assumption that all data points are generated
independently of each other.  For ground water samples to be independent of each other,
enough time must pass between sampling events to ensure that the previously sampled ground
water has left the vicinity of the monitoring well and that "new" ground water is being sampled.  At
the same time, the sampling interval must be short enough to provide "immediate" detection of
contamination.  

Ohio Hazardous Waste Regulations, OAC Rule 3745-54-97(G)(1), 98(D) and 99(F) and (G), require
the collection of independent samples for permitted facilities.  Wastewater policy and solid waste
regulations do not state specifically that independent samples must be collected, but solid waste
regulations do state that the sample number must be appropriate for the statistical method chosen
(OAC Rule 3745-27-10(C)(9)).  To perform a valid statistical test, including the collection of
independent samples, the time interval between sampling events should be based on the average
linear velocity of ground water for the zone being sampled.  The sampling interval is determined
after evaluating the monitored zone's effective porosity, horizontal hydraulic conductivity, hydraulic
gradient, and the fate and transport characteristics of potential contaminants.   U.S. EPA (1989)
outlined the method used to determine the sampling interval necessary to obtain an independent
sample.  

For wells recovering reasonably quickly, it may be possible to collect multiple independent samples
in one scheduled event by purging a well thoroughly, collecting the first independent sample, then
repurging the well and collecting the second independent sample, etc., until all necessary samples
have been collected.  If a regulated entity proposes this option, it must supply data indicating the
recharge rate of the well.  However, to develop a representative background ground water quality
database, temporal and seasonal water level (and parameter) variations must be accounted for.
In other words, just because there is adequate recharge does not mean that the complete
background data set may be collected at one sampling event. 

Generally, replicate samples are unacceptable for statistical analysis because the information they
provide indicate only the accuracy of the laboratory, not the ground water quality.  When more than
one sample is collected for the same parameter  from the same bailer or same aliquot of ground
water, the samples are considered replicate samples.  Replicates are not recommended as they
offer less variability than independent samples.  If, however, replicates have been obtained as part
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of the original background data for hazardous waste Part A Interim Status ground water monitoring,
and the Ohio EPA approves the use of this data as background for Part B permitted status
statistical analyses, the replicate values should first be averaged and the means used in the
statistical analyses. 

DETERMINATION OF BACKGROUND DATA SET

For all statistical methods employing the use of pooled background data, the background
data set should be such that it reflects naturally occurring changes in hydrogeology.  A
moving background data set is recommended using data from only the eight most recent sampling
events.  This will help minimize  temporal variability  (Sara, 1991).  During the initial year of
monitoring, only the background or upgradient well(s) should be used as background when
comparing up to downgradient values.  In subsequent years, the background levels, whether using
up to downgradient or intra-well comparisons, should be modified during each monitoring event so
that the eight most recent values are used.   When intra-well comparisons are being performed (e.g.,
control chart) the background database must be from an uncontaminated well. 

SAMPLING FREQUENCY 

Minimum sampling frequency shall be consistent with the appropriate statistical method
chosen.  The Ohio hazardous waste rules require at least semi-annual sampling for detection
monitoring (OAC Rule 3745-54-98(D)), while solid waste rules (OAC Rule 3745-27-10(D)(5))
require at least semi-annual monitoring for the initial year.  However, to determine initial
background values, sampling must be appropriate for the statistical method chosen (OAC Rule
3745-54-97(G)).  The hazardous or solid waste permit should outline the sampling frequency
necessary to achieve the minimum sample size, which may oblige the permittee to sample more
than what appears to be regulatorily required.     

CORRECTIONS FOR SEASONALITY

Only when strong empirical evidence is present to indicate that seasonality exists should
corrections for seasonality be made.  If seasonality is present in a data set, Ohio hazardous and
solid waste regulations require procedures be used to control or correct for it.  The following
methods are available: 1) Two-way ANOVA, which attributes variations to seasonal as well as
spatial differences,  2) U.S. EPA (1989) provided a simple method for calculating the monthly or
quarterly effects attributable to seasonal variations, and 3) Seasonal Kendal Test  (Gibbons, 1994).
Tolerance intervals tend to be self-correcting for seasonality since seasonal effects show up in both
upgradient and downgradient wells.  

STATISTICAL ASSUMPTIONS THAT VARY WITH METHODS

Once the basic assumptions have been met or the data set has been transformed to meet the basic
assumptions, a statistical method may be chosen.  The next step in making the choice is to
determine the best fit between the site-specific data available and the specific assumptions that
allow each  method to perform with the greatest accuracy and power.  Assumptions that vary
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between methods include minimum sample size, determination of distribution, homogeneity of
variance,  treatment of non-detect parameter levels, and experimentwise and comparisonwise
errors.   Another factor to take into account  for each of the following assumptions is, as the-site
specific database changes over time, it may be necessary to change to a different statistical
method.
 
MINIMUM SAMPLE SIZE

Statistical methods must employ a certain minimum sample size to yield both statistically and
hydrogeologically valid results.  The term "sample size" reflects the number of observations for each
parameter taken per well.  Minimum sample size requirements are  provided below for common
methods.  Although it is possible to perform the calculations and obtain mathematically valid results
using fewer independent samples for some statistical methods, the minimum sizes are designed
to yield hydrogeologically valid results.  Permit applicants  should be aware that during the initial
year of monitoring, the minimum sampling frequency is semi-annual and that more frequent
sampling may be necessary, depending on the statistical method chosen, the hydrogeologic
environment, and the objectives of the study.  Over time, the minimum sample size may be met,
allowing the use of a different statistical method. 

• ANOVA (Parametric or normally distributed):  The minimum sample size for analysis
of variance (ANOVA) should result in at least ten (10) degrees of freedom for error (or
within groups) variance.  The number of degrees of freedom is the number of ways the
sample may be changed without having to produce any change in the constraining factors.
For ANOVA, the total number of wells should be equal to or greater than two (2).  The
degrees of freedom are calculated using the equation N-p, where:

N = total number of observations; and
p = total number of wells.

Example: Quarterly sampling from four (4) wells will give twelve (12) degrees of
freedom (N-p=16-4=12).

U.S. EPA (1989) recommends that N - p be greater than 5 with p > 2, and with at least
three (3) observations per well.  However, if p (the number of wells) = 2, then the test is
essentially equal to the t-test.  Care should be exercised with small sample sizes because
they may lead to false positives (statistical test indicating contamination when none exists)
and false negatives (statistical test indicating no contamination exists when, in fact, there
is contamination).   It is  better to recommend a minimum of 10 degrees of freedom, with
the number of wells being equal to/greater than 2 (N - p > 10,  p >2).  

• ANOVA (Non-parametric or non-normal distribution):  The minimum sample size
required for Non-parametric ANOVA (ANOVA based on ranks) is at least three (3) wells
with at least three (3) observations in each well (N-p=9-3=6).  Ohio's solid waste
regulations require that a minimum of four (4) independent samples be taken from each
well during the initial 180 days of monitoring, so there will be at least four (4) independent
observations per well initially.
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• Tolerance Interval:  The minimum sample size for constructing a Tolerance Interval is at
least eight (8) independent background observations from each well.  Tolerance interval
calculations can be made with as few as three (3) observations; however, this would result
in a large upper tolerance limit due to the increased tolerance factor (K) associated with
smaller sample sizes.  

• Prediction Intervals:  The minimum sample size for constructing prediction intervals
should result in at least ten (10) degrees of freedom. Degrees of freedom for tolerance
intervals are calculated using the equation  n - 1, where n = number of observations in the
background data (so at least 11 independent samples are needed).   While eight (8)
samples may be used, ten (10) or more are recommended.  The prediction limit should
be recalculated at least annually to update the background for upgradient changes. 

• Control Charts:  The minimum sample size required for control charts is eight (8)
observations in each well.  This requires that eight independent samples be collected
over a one year period for each well. 

DETERMINATION OF DISTRIBUTION

Normal distribution is based on the Central Limit Theorem, which states that sums and averages
of random variables tend to be normally distributed.  Normality deals with average behavior and
average variability of behavior.  Distribution is important in ground water monitoring because
determination of population characteristics are being made based on limited information contained
in a set of data.  The most common example of normal distribution is the bell-shaped curve. The
assumption that all samples are independent is required.

If data is normally distributed, parametric methods of analysis may be applied.  When data is neither
normally or log-normally distributed, non-parametric methods are most commonly be used.
Parametric methods may be applied to non-normally distributed data and non-parametric tests may
be applied to normal data.  Non-parametric methods are more efficient, or powerful, when data is
normally distributed than parametric methods when if data is not normal. 

Skewness measures the degree of symmetry of the sample distribution.  Normal data has a
skewness coefficient of 0.   If the data is neither normally or log-normally distributed, is positively
skewed, and an indication exists that the distribution is skewed to the right, the statistician should
proceed as if the data was log-normal using non-parametric tests or try another type of
transformation.  Parametric tests lose power when the skewness coefficient is > 1.0.   If the same
case exists and the data is negatively skewed, indicating a shift to the left, Cohen's adjustment for
non-detect data or non-parametric tests should be used.  If the skewness is equal to zero, a perfect
bell-shaped curve exists.  

Kurtosis is the area under the distribution curve.  The greater the spread of the data distribution, the
lower and broader the peak of the distribution curve will be.  Kurtosis measures the degree of
peakedness of the sample distribution.  It is measured relative to the normal distribution curve.
Normal kurtosis is = 0.  As the kurtosis coefficient becomes greater, the peakedness decreases
and the curve spreads out, indicating a broader distribution of values.  As the kurtosis coefficient
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decreases (below 0), the peak of the distribution curve becomes higher and more peaked,
indicating that the distribution is centered around a narrow range of values  (Ott, 1977). 

TRANSFORMATION OF DATA TO ACHIEVE NORMAL DISTRIBUTION

It is critical in any statistical evaluation to determine whether the data is normally distributed.  If the
original data does not have a normal distribution, transformations should then be attempted to
achieve normality, as most statistical tests have the underlying assumption that the data has a
normal distribution.  The most accepted method is log-transformation.  Log-transformations are
most useful when the ratio of the largest to the smallest value in a data set is greater than 20.  While
U.S. EPA (1992) gives log transformations as the default method, the Ohio EPA recommends both
original and log-transformed data be evaluated to find the best fit.  Transformations other than
logging the data, such square root, reciprocal and cube root, while less standard, may also be
applied.  If normality cannot be achieved, Non-parametric tests should be used.

NORMALITY TESTS

Many different tests are available to determine if data is normally distributed.  The following
discussion will describe the minimum requirements necessary to perform the eight most common
normality tests, Shapiro Wilk, Shapiro Francia, Chi Squared, Coefficient of Variation, Probability
Plots, Kolomorgorov-Smirnov, Skewness Coefficient, and Kurtosis.  All of these tests are available
in GRITS.   

• Shapiro Wilk:  Shapiro Wilk is considered the best numerical test of normality.  It is the
most powerful for detecting departures from normality in the tails of a sample distribution.
It is useful for sample sizes ranging from 3 to 50 and data must be log-transformed before
performing the test   

• Shapiro Francia:  While Shapiro Francia has the same benefits as Shapiro Wilk, it is
best used for sample sizes larger than 50.  It also should be used on log-transformed data.

• Chi Squared (X2 = Mean2):  Chi Squared is not the most powerful test, as it does not
indicate how the data is not normal.  If the departure from normality is in the tails instead
of the middle of the data, Chi Squared may not register it as significant.

• Coefficient of Variation:  This test is easy to calculate: if S/X > 1 (S/X= Standard
Deviation/ Mean), the distribution is not normal.  While this test is good for small sample
sizes, it is not a reliable indicator of model appropriateness.  Its true purpose is to
estimate skewness, not normality. 

• Probability Plots/Correlation Coefficient:  This method measures the strength of the
linear relationship between two variables, normal distribution, and the test group.  The test
group value should, if normal, fall in a straight line with the proportion of observations less
than or equal to each observed value.  The correlation coefficient is = 1.)   If no relationship
exists between the two groups, the correlation coefficient = 0.  This test is a good indicator
of  skewness and  the presence of outliers.
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• Kolomorgorov-Smirnov Test  (Cheeney, 1983):  The Kolomorgorov-Smirnov test
graphically evaluates the fit of the distribution (the goodness of fit). 

• Kurtosis:  Kurtosis measures the thickness of the tails in a distribution.   Normal
distribution has a kurtosis of 0.

• Skewness Coefficient:  The skewness coefficient measures the degree of symmetry in
the distribution.  Normal distribution has a coefficient of 0.  Parametric tests lose power
when the skewness coefficient is > 1.0.

  
HOMOGENEITY OF VARIANCE

Variance is the variation or skewness between the parameter levels in the wells being compared,
typically  downgradient and background wells.  It estimates the amount of spread or variability of the
data.  Homogeneity of variance assumes that all the wells being compared have the same
skewness or variance.  If this assumption is not true, if the wells do not have close to the same
distribution, then the ability of a method to detect differences between the group means is reduced.
Methods such as ANOVA assume homogeneity of variance; however, in reality this situation almost
never exists.  Limitations and uses are described below for the two most commonly used methods
of evaluating homogeneity of variance:  Box Plots and Levene's Test.  Box Plots are covered briefly
in Chapter 12.  Both tools are available in GRITS.

• Box Plots provide a quick way to visualize the spread of data using a graphical display.
If the longest and shortest box lengths differ by a ratio of greater than 3, Levene's test
should be performed for homogeneity of different groups.  Box plots are a pre-requisite
to performing Parametric ANOVA.

• Levene's Test  evaluates the homogeneity of variance between compliance wells and
pooled background wells.  It may be used with either a normal or non-normal data
distribution.  Variances of different wells are assumed to be approximately equal. Central
to the test is the calculation of the F-statistic, which is the detection of differences among
group means. If the F-statistic is not significant, variances are approximately equal.  If the
F statistic is significant, the groups do not have equal variance, and the non-parametric
Kruskal Wallis test should be employed.   Levene’s test may be used as a One-way
Parametric ANOVA test. 

TREATMENT OF VALUES BELOW THE DETECTION LIMIT (NON-DETECTS)

If there are less than or equal to 15% non-detects in the total number of measurements analyzed for
each parameter, the value of each non-detect should be substituted with one-half the practical
quantification limit (PQL) for the parameter (Gibbons, 1992).  If 15 to 50% non-detects are present,
either use a non-parametric ANOVA test or adjust the original data and proceed with a parametric
test. If a method involving intervals is being employed, use either Cohen's or Aitcheson's
Adjustments.  Cohen's Adjustment assumes that the non-detects indicate a low but positive
concentration.  Aitcheson's adjustment assumes that the non-detects represent a true zero
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concentration.  When 50 to 90 % of the results are non-detects, switch to non-parametric rank
methods or use Poisson-based non-parametric prediction or tolerance intervals.  (However,
Wilcoxin Rank Sum is most powerful at 15% <ND < 50%.)  If there are 90-99% non-detects, use the
Poisson-based non-parametric prediction or tolerance intervals.  If 100% of the samples are non-
detect, do not employ statistics.

In order to choose between Cohen's and Aitcheson's adjustments, consideration should be given
as to whether contamination is present.  If so, Cohen's Adjustment may be preferred.  Additionally,
parameter characteristics should be considered.  Non-detects for naturally occurring parameters
may indicate a low but positive concentration.  In this case, Cohen's Adjustment should be used.
If the parameter is a common lab contaminant, Aitcheson's Adjustment should be chosen.  

ERRORS

Two types of errors, experimentwise and comparisonwise, are common when performing statistical
analysis.  Comparisonwise error is based on the false positive rate associated with a single well
comparison.  Experimentwise error is based upon the total number of statistical tests being
performed. 

Comparisonwise Error  

There are two types of statistical comparisons, paired and multiple. A paired comparison compares
one upgradient well with one downgradient well.  Multiple comparisons exist when downgradient
data is pooled and then compared with upgradient data.  Examples of paired comparisons using
parametric tests would be the Student t and Average Replicate tests.  The Wilcoxin Rank Sum test
is a paired comparison test that works well when the data is not normal (non-parametric) and when
a large number (even greater than 50%) of non-detects are present, as it is based on ranks rather
than actual concentrations.

Multiple comparisons arise where there are multiple compliance wells and multiple parameters per
well.  If one test is run in every well for each parameter, a large number of tests will be needed.  The
larger the number of tests, the greater the chance of error.  In particular, with increasing
comparisons, a corresponding increase in the false positive error rate occurs (i.e., for every 100
tests, 5% of the tests should be expected to be false positives). 

Experimentwise Error

Statistics are based on the null hypothesis, that is that there is no real difference between the value
of a sample in the population sampled and the hypothesized value of the sample; in other words,
the assumption is that there will be no contamination.  There are two types of errors associated with
accepting this hypothesis: 

• Type 1 or False Positives ("Hanging the Innocent"):  Rejection of a true null
hypothesis.  If there is indeed no contamination (a true null hypothesis) and the statistical
test  indicates that contamination exists, a false positive has occurred. 
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• Type 2 or False Negatives (“Freeing the Guilty”): Acceptance of a false null
hypothesis.  If the null hypothesis is false, meaning there is indeed contamination, and the
statistical test indicates no contamination, a false negative has occurred. 

The goal is to minimize both Type I and Type 2 errors.  When using ANOVA, the experimentwise
error level (Type I, or false positive error) should be less than or equal to five (5) percent for each
testing period.  This means that, for the upgradient to downgradient well group comparisons, the
Type 1 (alpha) error level should be less than or equal to five (5) percent.  For individual well
comparisons, the error level (Type I error) should be less than or equal to one (1) percent.  If there
are more than five downgradient wells, each individual well comparison must be made at the one
percent error level.  The experimentwise five percent error should not be divided by the number of
downgradient wells because this may result in an individual error level of less than one percent.  If
the false positive rate increases,  the statistical test will become less powerful.    

The power of a statistical test indicates its sensitivity and the probability that the test will indicate
actual contamination.  The goal is to have the power be as high as possible.  If the basic
assumptions of each test are met, the maximum power will be employed.  The power to detect
differences tends to increase as the alternative mean moves farther from the null hypothesis (or as
the value from an individual well moves further from the mean of the background database).

METHODS

The following section provides a very general discussion of specific uses and problems associated
with the most common statistical methods not addressed in U.S. EPA (1989).  This document,
along with its Addendum, provide a further discussion of each method as well as sample
calculations. 

 Each constituent that must be statistically analyzed may require a different statistical method; for
example, inorganic parameters such as chloride or certain metals may be detected during every
sampling event with very few non-detects, thereby allowing analysis using a parametric method.
Other parameters with a large percentage of non-detect values may require a non-parametric
approach.  All statistical assumptions (e.g., data distribution, normality, variance) must be tested
and validated upon the designated data set prior performing the statistical test.  The statistical test
must be appropriate for each constituent's data set.  

ANOVA

ANOVA (parametric one way) compares background values to several compliance wells at once.
It is a powerful test when only a small amount of data is available.  It is also recommended when
ground water velocity is higher than average due to the fact that simultaneous testing of multiple
compliance wells requires many independent samples.  The purpose of ANOVA is to assess
whether the average concentration (mean) at any compliance well is significantly higher than mean
background level.  Two-way ANOVA is used to correct for seasonal variations.   Both are available
in GRITS/STAT. 
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Problems associated with ANOVA are: 1)  pooling of downgradient data results in a slower
detection of a release; 2)  ANOVA commonly indicates a statistically significant difference when
small consistent spatial differences in ground water geochemistry exist (which often occurs across
a waste disposal facility);  3)  both parametric and non-parametric ANOVA assume homogeneity
of variance, a condition that almost never exists in reality;  4)  ANOVA does not adjust for multiple
comparisons due to multiple constituents which results in an increased rate of false positives and
negatives (Gibbons, 1993); and  5) ANOVA is not good at detecting a narrow plume that may affect
only 1 out of 10 or 20 monitoring wells. 

ANOVA (non-parametric) analysis includes the Kruskal Wallis and Wilcoxin Rank Sum tests,
which are based on ranking the order of the combined background and compliance data, followed
by a comparison of the relative rank of each group.   This test is very powerful when the distribution
of the data set is non-normal.  Non-parametric ANOVA may be used whenever parametric ANOVA
is appropriate.  Non-parametric methods are more powerful if data is normally distributed than
parametric methods are if data is not normal.  Many of the same problems exist with non-parametric
ANOVA as did with parametric ANOVA (i.e. assumption of homogeneity of variance).  In addition,
the non-parametric method requires more observations than the parametric ANOVA.  It, too, is
available in GRITS/STAT.

TWO-SAMPLE TESTS

Wilcoxin Rank Sum and T-Test are examples of two-sample tests.  The Wilcoxin Rank Sum test
is based on a comparison of 1 background to 1 compliance well, while the T-test compares a
pooled background data set with 1 compliance well.  The Wilcoxin Rank Sum test does not require
normality of distribution, while the T-test does.  The power of the two tests is greatest when the
percent of non-detects is between 15 and 50%.  Both are available in GRITS/STAT.

INTERVALS

Due to the fact that the width of tolerance, prediction and confidence intervals (limits) may be very
different for the same data sat, it is important to distinguish the purpose for using intervals before
choosing the type of interval to be used.   Typically, based on the same data, tolerance intervals (TI)
will have the widest limits followed by prediction (PI), then confidence (CI).  (TI > PI > CI).

Tolerance and prediction intervals are calculated by comparing background or intra-well data
against downgradient sample values.  Confidence intervals are computed by comparing
downgradient values against a fixed standard such as an ACL or MCL.  When using tolerance and
prediction intervals, significant evidence of contamination is indicated by any value from either a
downgradient or compliance well exceeding the upper 95% tolerance or prediction limit.  Statistical
evidence of contamination using confidence intervals is indicated when the lower limit of the interval
is above the fixed standard.  Parametric tolerance and prediction intervals must be normally or log-
normally distributed. Typically, log-normal data is used. 

The important difference between tolerance and prediction intervals is the definition of "population"
or “k”.  Tolerance intervals assume a 95% confidence level of including a specified portion of the
entire distribution of measurements from which the background data were drawn.  For prediction
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intervals, the 95% confidence level is related to containing all of the next k measurements, where
k is relatively small.  Tolerance intervals are used when comparing data with MCLs, while
confidence intervals are used most often with ACLs.  This is due to the fact that tolerance intervals
are more stringent and should be used when quantifiable health-based risk levels are available.

The following is a discussion of the uses and problems associated with tolerance intervals
performed on background and compliance limits, parametric and poisson-based prediction
intervals, and parametric and poisson-based confidence intervals.  All the intervals are available
on GRITS/STAT with the exception of the Poisson-Based Intervals.

Tolerance Intervals

• Tolerance Interval On Background are used in detection ground water monitoring when
comparing the upper limit of uncontaminated background data to individual compliance
points.  If any single compliance well exceeds the upper 95% tolerance limit, there is
significant evidence of  contamination. 

• Tolerance Interval On Compliance Limits (MCL or ACL) are Poisson-Based Intervals.
This test is most powerful when non-detects are greater than 50%,  computed on either
parametric or non- parametric data.  This method is used in compliance ground water
monitoring when comparing the upper limit of a compliance well's data and the fixed
Ground Water Protection Limit set in the permit, either the MCL, risk-based limit, or ACL.
If the tolerance limit exceeds the standard, significant evidence exists that more than 5%
of all compliance well values exceed the tolerance limit.  This test is also used in intra-well
comparisons when comparing present data with upper limits derived from past data from
the same well.

Prediction Intervals

• Parametric Prediction Intervals are the most powerful when non-detects comprise less
than 50% of the data set.  The main problem associated with this method is the
determination of “K”.   Cameron (1995) defined K as the number of samples collected from
one well during the time between the last sampling event and the next time the data must
be statistically analyzed.  If statistics are required annually and four sampling events
occurred during the year, then K = 4.  Parametric prediction intervals are the most powerful
when performed on parameters naturally detected in ground water such as inorganics or
geochemical parameters.  This method is especially useful when only a few compliance
data points are available, as in the early stages of detection monitoring.  One of the
benefits of this method is that it effectively limits the false positive rates without sacrificing
false negative rates. 

• Poisson-Based Prediction Limits (Non-Parametric) use original measurements, not
ranks.   The Poisson intervals are useful for rare event data, when a large percentage of
the values are non-detect.  They are commonly used for intrawell comparisons when
computing the upper interval limit from past data to predict expected values of future well
samples.  
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Confidence Intervals

• Parametric Confidence Intervals indicate the proportion, over time, that repeated
random intervals will cover the desired parameter value.  Normal or log-normal data is
necessary to perform this test.  Parametric confidence intervals are useful if none of the on-
site wells are truly upgradient.  This method should only be used in compliance monitoring
when comparing the value from a well to a fixed limit (most commonly ACL) derived from
on-site background data.  However, it is not the preferred method for statistical analysis
of ground water when the comparison is being made to a health-based standard because
this method only estimates the approximate level of the true concentration range.  It should
never be compared to a MCL.  

• Poisson-Based Confidence Intervals (Non-Parametric) , while requiring more
compliance observations than its parametric counterpart, does not always need as large
a background data set as the parametric confidence interval.  Again, it should only be
used when comparing a value to a fixed limit derived from site-specific data.

CONTROL CHART METHOD

The control chart method, mentioned specifically in the hazardous waste (permitted) and solid waste
regulations, is based on normally distributed data but does not require it.  As mentioned above,
control charts require eight independent samples over a one (1) year period from each well.  Unlike
the other methods, which compare sample results from upgradient to downgradient wells, the control
chart method evaluates the change in concentration of a parameter in a single well over time.  The
control chart method should be used only for initially uncontaminated wells.  Before performing this
method, a demonstration must be made, using another statistical method, to provide evidence that
no contamination is present in the well.  Caution is needed when approving this method for sites
already in operation where contamination may have occurred previously (U.S. EPA, 1992a).  

The control chart method is useful for analyzing inorganics or geochemical parameters having few
non-detects.  Use of this method avoids problems arising from concentration differences due to
spatial or hydrogeologic variability.  It is available in GRITS/STAT.

STATISTICAL DATA SUBMITTALS

To facilitate correct interpretation of the statistical data, by both Ohio EPA and the regulated
entity, the Agency recommends that certain information be submitted with any statistical
evaluations.  Evidence should be provided that the statistical methods used:

• were as specified in the permit, if applicable.

• were conducted separately for each constituent.  

• were completed within the time frame specified in the permit, if applicable.
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• were appropriate for the distribution of the constituents.

• were done at a Type 1 error level of .01 for each testing period for individual well
comparisons; and .05 for multiple comparisons (with the exception of tolerance,
confidence, prediction intervals and control charts).

• accounted for data below the limit of detection as specified in the permit, if applicable.

• included procedures to control or correct for seasonal, spatial and temporal variability,
as necessary.

Example calculations for each statistical method should be provided.
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