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Dayton-Springfield PM2.5 Nonattainment Area 

Incomplete Monitoring Data Substitution Analysis 
 
 
The current Dayton-Springfield nonattainment area is located in southwest Ohio and 
includes the following counties: Clark, Greene, and Montgomery. 
 
The area has three monitors measuring PM2.5 concentrations, which are operated by 
the Regional Air Pollution Control Agency (RAPCA)1, which is part of the Montgomery 
County Health Department. A listing of the design values based on the three-year 
average of the annual mean concentrations from 2008 through 2010 is shown in Table 
1. The design values calculated for the Dayton-Springfield area shows that the annual 
PM2.5 NAAQS has been attained. 
 
Table 1 - Monitoring Data for the Dayton-Springfield area for 2008 – 2010 

Average
2008 2009 2010 2008-2010

39-023-0005 Clark 12.7 12.4 13.1 12.7
39-057-0005 Greene 11.6 11.5 13.2 12.1
39-113-0032 Montgomery 13.2 12.4 14.0 13.2

Less than 75% capture in at least one quarter

Annual Standard

Site County Year

 
Source: U.S. EPA Air Quality System (AQS); http://www.epa.gov/ttn/airs/airsaqs/index.htm 

 
 
However, based on Section 107(d)(3)(E)(i) of the Clean Air Act (CAA) the PM2.5 
monitoring has to show that the three-year average of the annual mean values, based 
on data from all monitoring sites in the area or its affected downwind environs, are 
below 15.0/m3. Moreover, in accordance with the CAA Amendments, three complete 
years of monitoring data are required to demonstrate attainment at a monitoring site. In 
addition, U.S. EPA regulations require at least 75% data capture in each quarter of a 
consecutive 3-year period in order for a design value to be valid.  
 
Table 1 shows that the monitor site in Greene County (site 39-057-0005) did not comply 
with the 75% data capture requirement in 2010. Specifically, the third quarter (July, 
August, and September) of 2010 has only 45% capture. This monitoring site underwent 
roof repairs (reroofing) from 08/12/2010 through 09/29/2010 for a total of 17 missing 1-
in-3 day PM2.5 FRM runs.  In 2010 there were scheduled a total of 122 scheduled runs.  
It is important to mention that this site is also the lowest reading site for PM2.5. 
 
In order to comply with U.S.EPA 75% capture requirements, Ohio EPA prepared a 
statistical analysis using multiple imputations. Imputing missing values for site 39-057-
                                            
1 RAPCA is a Local Air Agency that contracts with Ohio EPA and receives grants from U.S. EPA to enforce state and 
local air pollution control regulations in the six-county region (Preble, Darke, Miami, Montgomery, Clarke, and 
Greene). 
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0005 and then doing an ordinary analysis as if the imputed values were real 
measurements (this approach is usually better than excluding subjects with incomplete 
data). Most methods for accounting for having incomplete data can be complex; the 
bootstrapping method however, is an easy method to implement even though the 
computations can be slow. To use the bootstrap, to correctly estimate variances of 
regression coefficients, one must repeat the imputation process and the model fitting 
perhaps 1000 times using a resampling procedure. 
 
Multiple imputations use random draws from the conditional distribution of the target 
variable given the other variables. When a regression model is used for imputation, the 
process involves adding a random residual to the “best guess” for missing values, to 
yield the same conditional variance as the original variable. To properly account for 
variability due to unknown values, the imputation will be repeated 1000 times. 
 
Imputing missing data for Dayton-Springfield PM2.5 nonattainment area 
 
For simplification purposes we will call Site 39-057-0005 Site A, Site 39-023-0005 Site 
B, and Site 39-113-0032 Site C. 
 
 
1. Dayton-Springfield Annual PM2.5 Design Value History 
 
Table 2 – Historic Design Values for the Dayton-Springfield area from 1999 to 

2010 

Site Site County 
Annual Design Value 

1999-
2001 

2000-
2002 

2001-
2003 

2002-
2004 

2003-
2005 

2004-
2006 

2005-
2007 

2006-
2008 

2007-
2009 

2008-
2010 

39-057-0005 A Greene         12.4 13.2 13.6 12.3 12.1 12.1
39-023-0005 B Clark 15.6 15.4 14.7 14.2 14.8 14.4 14.8 13.5 13.2 12.7
39-113-0032 C Montgomery     16.0 15.5 15.9 15.2 15.5 14.1 13.7 13.2
  incomplete data (quarter with <75% capture)   
  violating DV             

 
From Table 2, all three sites have design values (DV) that meet the PM2.5 annual 
standard since 2006-2008 period. However, site A has not proven clean data in 2010 
and therefore it makes the entire nonattainment area non-eligible for redesignation. As 
mentioned before, the lack of clean data in 2010 is due to the low percentage of data 
capture in one or more quarters of 2010.  
 
Multiple imputations and bootstrapping methods will help to generate the necessary 
missing data to determine 2010 completeness and recalculate the 2008-2010 DV. 
 
2. Correlation, Quarterly Data Capture, and Data Site Pairing 
 
Linear regression analyzes the relationship between two variables, X and Y. For each 
subject, there is a known X and Y and we want to find the best straight line through the 
data. The goal of linear regression is to find the line that best predicts Y from X. Linear 
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regression does this by finding the line that minimizes the sum of the squares of the 
vertical distances of the points from the line. To determine which site combination (A 
and B or A and C) has the best data (best fit) from which to impute missing data for site 
A we determine the correlation between sites A and B and the correlation between A 
and C. 
 
The correlation value (R2) is useful because it describes the degree of relationship 
between two variables2 (variables or site concentrations in sites A, B and C). R2 is only 
a descriptive statistics. Roughly speaking, we associate a high value of R2 with a good 
fit of the regression line and associate a low value of R2 with a poor fit. 
 
The mean of the quarterly data captured (the mean of the percentage captured) will 
allow verifying the central tendency of each site, which will help to determine what site 
(B or C) has a more data completeness to impute for site A.  
 
Finally, although not as statistically significant as the correlation, or as the mean of the 
percentage captured, pairing the site data seeks to reduce variability in order to make 
more precise comparisons with fewer observations. Pairing the data will help to 
determine which site, B or C, have more data when paired with A.  
 
Below are the results for sites A vs. B and for sites A vs. C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                            
2 An R2 value of 0.0 means that knowing X does not help to predict Y, there is no linear relationship 
between X and Y. When R2 equals 1.0, all points lie exactly on a straight line with no scatter; knowing X 
predicts Y perfectly. 
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Linear Regression and Correlation for Site A vs. Site B 
 

 

Regression Statistics 
Multiple R  0.961043954
R Square  0.923605481
Adjusted R Square  0.92351105
Standard Error  1.780706901
Observations  811

 
 
 

   Coefficients  Standard Error  t Stat  P‐value  Lower 95%  Upper 95% 
Intercept  0.521517632  0.136976611 3.80734805 0.00015108 0.252646159 0.790389106
X Variable 1  0.873190988  0.00882923 98.89775017 0 0.855860087 0.890521889

 
 
ANOVA 

   df  SS  MS  F  Significance F 
Regression  1  31013.99463 31013.99463 9780.764989 0
Residual  809  2565.271907 3.170917067
Total  810  33579.26654         

 
 
 
 



 

6 
 

Linear Regression and Correlation for Site A vs. Site C 
 

 

Regression Statistics 
Multiple R  0.940886234
R Square  0.885266906
Adjusted R Square  0.885120562
Standard Error  2.193683537
Observations  786

 
 
 

   Coefficients  Standard Error  t Stat  P‐value  Lower 95%  Upper 95% 
Intercept  0.81715995  0.171189431 4.773425231 2.16082E‐06 0.481116 1.153203844
X Variable 1  0.81295687  0.010452417 77.77692926 0 0.792439 0.833474906

 
 
ANOVA 

   df  SS  MS  F  Significance F 
Regression  1  29110.49143 29110.49143 6049.250725 0
Residual  784  3772.802007 4.812247458
Total  785  32883.29344         
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Table 3 - Quarterly Data Capture 
 
      Monitoring Sites 

      A  B  C 

Q
ua

rt
er
ly
 D
at
a 
Ca

pt
ur
e 
20
03

‐2
01
0 

2003 Q1  ‐  100%  87% 
2003 Q2  ‐  93%  96% 
2003 Q3  ‐  100%  100% 
2003 Q4  73%  100%  89% 
2004 Q1  71%  100%  100% 
2004 Q2  93%  100%  90% 
2004 Q3  100%  97%  97% 
2004 Q4  90%  100%  90% 
2005 Q1  97%  100%  100% 
2005 Q2  97%  100%  100% 
2005 Q3  100%  100%  100% 
2005 Q4  100%  90%  97% 
2006 Q1  100%  100%  100% 
2006 Q2  97%  100%  97% 
2006 Q3  94%  100%  100% 
2006 Q4  100%  100%  97% 
2007 Q1  97%  100%  100% 
2007 Q2  93%  100%  100% 
2007 Q3  100%  100%  100% 
2007 Q4  93%  100%  97% 
2008 Q1  97%  97%  93% 
2008 Q2  100%  87%  98% 
2008 Q3  94%  100%  98% 
2008 Q4  100%  100%  95% 
2009 Q1  100%  100%  94% 
2009 Q2  100%  97%  100% 
2009 Q3  100%  100%  90% 
2009 Q4  97%  100%  100% 
2010 Q1  97%  100%  97% 
2010 Q2  100%  100%  100% 
2010 Q3  45%  100%  97% 
2010 Q4  100%  100%  100% 

   MEAN  94%  99%  97% 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4 - Paired Data Site 
 
      29 ‐ Quarter look (2003 Q4 ‐ 2010 Q4)    
Site  Site pairs Q1  pairs Q2  pairs Q3  pairs Q4  Total 
A  B  197  199  191  224  811
A  C  186  194  188  218  786
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The correlation between A and B is 0.9236 and the correlation between A and C is 
0.8853. This shows that the relationship between A and B is stronger than the 
relationship between A and C. From the mean of the quarterly data captured (Table 3), 
we can observe that Site B has more data completeness (99%) than Site C (97%); 
therefore Site B has a more complete data from where to impute for site A. In addition, 
from the data site pairing (Table 4) it can be observed that Site A and B have more 
paired data (in each quarter and in total) to establish a better relationship than Site A 
and Site C. 
 
Finally, based on the above results, it was determined that Site B has the best data, 
statistically significant (greater correlation, larger data completeness, and larger paired 
data) from which to impute missing data for Site A. Therefore, we will use multiple 
imputations and bootstrapping methods to generate the necessary data from Site B to 
impute on Site A missing values. 
 
3. Bootstrapping and Imputation 

 
The bootstrapping method randomly applies real residuals from the linear regression to 
the imputed current-period Site A values. A 1000 bootstrap runs adds a random residual 
to the “best guess” missing values yielding the same conditional variance as the original 
variable. A summary of the bootstrapping statistics is presented in Table 5, where the 
bootstrapping residual is -929.0569514e-6. 
 
Table 5 - Bootstrapping Summary Statistics 

Average -929.0569514e-6

SD 0.0356
Max 0.103
Min -0.137

 
 
Finally to impute the missing data using the bootstrapping residual we use the following 
equation, based on the linear regression from Site A vs. Site B: 
 
 

Site A concentration = Intercept + x Variable * Site B concentration + 
bootstrapping residual  

 
 
Where: 
 
Intercept = 0.521517632 (from linear regression) 
x Variable = 0.873190988 (from linear regression) 
Bootstrapping residual = -929.0569514e-6 
Site B concentration = values in Site B 
 
After applying the above equation to all missing data in Site A, we recalculated the 
design values based on the three-year average of the annual mean concentrations for 
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all existing years in Site A (Site 39-057-0005). Table 6 shows Site 39-057-0005 before 
and after the imputation of missing data. Also the “new” site (with imputed values) 
shows a “new” passing DV for 2008-2010. 
 
Table 6 – Comparison Between Original and Imputed Values for Monitor 39-057-

0005 from 2004 to 2010 
                           Annual Design Value 

   Site  Year  2004‐
2006 

2005‐
2007 

2006‐
2008 

2007‐
2009 

2008‐
2010    2004  2005  2006  2007  2008  2009  2010 

OLD  39-057-0005 12.1  15.5  11.9  13.3  11.6  11.5  13.2  13.2  13.6  12.3  12.1  12.1 

NEW  39-057-0005 11.7  15.2  11.9  13.5  11.6  11.5  12.2  12.9  13.5  12.3  12.2  11.8 

   incomplete data (quarter with <75% capture)                      
 
As we said before, the bootstrapping method randomly applies real residuals from the 
linear regression to the imputed current-period Site A values. A 1,000 bootstrap runs 
provided a 95% confidence interval for the imputed current-period design value. Table 7 
shows that, since the R2 value between Site A and Site B was strong, predicting its 
relationship almost perfectly (R2 =  0.9236),  there is small variation between DV interval 
(as well as residual intervals) and it was needed to provide at least 3 significant 
decimals to show the different intervals. Table 7 shows that the DV = 11.763 has the 
most occurrences, confirming that the “new” DV 2008-2010 of 11.8, in Table 6, is the 
best guess of imputed data.  
 
 
Table 7 - Bootstrapping Residuals and DV Calculations 

Residual Design Value Frequency 
-0.14 11.754 3

-0.115 11.755 3
-0.09 11.757 20

-0.065 11.758 87
-0.04 11.760 179

-0.015 11.761 252
0.01 11.763 262

0.035 11.764 143
0.06 11.766 42

0.085 11.767 9
 
 
 
Ohio EPA believes that the above analysis has generated the most statistically 
significant results yielding to the “best” missing data statistically possible. This analysis 
should also satisfy US EPA requirements in terms of total percentage data capture and 
design values under the PM2.5 annual standard (15.0µg/m3). 
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