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2.7 IRON FOUNDRIES

2.7.1 Process-Descriptionl_7

Foundries produce castings for automotive parts, light and
heavy machinery, pipe and a wide range of miscellaneous products.

' The process involves melting scrap metal and/or pig iron (crude
iron in the form of blocks weighing about 100 pounds) and pouring
the molten metal into prepared molds. The two major categories are
"iron" foundries and "steel" foundries. Iron foundries may be
further subdivided into "gray iron", "malleable iron" and "ductile
iron" foundries. Both iron and steel consist primarily of élemental'
iron but with differing carbon content. Iron contains 2 to 4 per-
cent carbon, and steel contains 1 percent or less. Iron formula-
tions also incorporate various amounts of other elements. For
example, silicon content is generally in the range of 2 to 3 percent
in iron formulations.8 Steel may also contain alloying elements.

Iron foundries may be further classified as either "captive"
or "jobbing" foundries. A captive foundry is one that is a regular
operating element of a manufacturing establishment and whose
castings are generally made for the products of the parent company.
In contrast, a jobbing foundry is one that manufactures a variety
of castings which are not used in its own products, but are made
for the products of other companies.

Figures 2.7-1 and 2.7-2 illustrate the process flow in a
typical iron foundry; The basic process flow is essentially the
same regardless of whether the foundry is captive or job shop.

About 70 percent of the iron melted in the U.S. is produced in

a cupola furnace.? Cupola capacities range from 1 to 100 tons of
molten metal per hour. Over 60 percent operate in the range of

3 to 11 tons per hour. (Figure 2.7-3 illustrates a typical cupola

furnace.) The other types of furnaces used in iron foundries are

N 1A
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electric arc, electric inducfion and'reVerbératory. (These furﬁaces
are shown in Figures 2.7-4 to 2.7-7.) |

Raw materials are charged into the cupola throuéh a door in the
top of the furnace. The raw materials consist of iron and/or steel
scrap, pig iron, flux materials, ferrosilicon and coke. Fluxes are
limestone or éimilar minerals, that absorb impurities'afﬁer the
charge has melted. Coke is essentially pure carbon in lump form.
The burning of the coke provides the heat to melt the raw materials.
As the charge melts, it descends to the bottom of the furnace where
the molten metal product is drained out periodically. Fresh raw
materials are added to keep the furnace full. Operation of cupola
furnaces can be done on a continuous basis.

The charge for electic arc, electric induction and reverbera-
tory furnaces consists mainly of iron and/or steel scrap, pig iron
and limestone. The reverberatory furnace is heated by firing gas or
0il. These furnaces are operated on a batch basis.

The molten metal is tapped from the furnace at a temperature of
about 2900°F into a ladle or into a holding furnace until it is
ready to be dfained into a ladle. The ladle is transporfed to the
mold line, and molten metal is poured into prepared molds. The
molds contain the molten iron within the mold form until it solidi-
fies. 1In production of high strength ("ductile iron") castings,
magnesium is added to the molten iron by a process called inocula-
tion. (See Figure 2.7-8 for an illustration of the magnesium treat-
ment methods used to produce ductile iron.) After solidification,
the sand molds and castings are separated, and thé sand is recycled
to the mold making operation. Castings are shaken out of the molds,

or the molds are broken away from the castings. When sufficiently

2-216
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producing ductile iron.
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cool, the castings are cleaned by Shot biasting, and the.reméining
excess metal (gates, sprue, risers, flash, etc.) is removed'by
sawing, grinding, chipping, cutting, etc. These processes are
generally housed in an enclosure. |

| Castings intended for qertain uses may be annealed (heat
treated) for several hours at temperatures of 1000 to 1600°F.

Heat treating furnaces, fired by gas, 0il or electricity, are
referred to by such names as "annealing", "hardening", "car-bottom"
and "traveling hearth" furnaces. Castings that have been annealed
in the present of sufficient silicon are referred to as malleable
iron castings. Some ductile iron castings, which are produced by
inoculating the melt with a small amount of magnesium just prior to
casting, are also often subjected to annealing. Finishing opera-
tions such as shot or sand blasting, grinding and surface coating
may follow the heat treatment.

Production of molds and cores is an integral part of the
foundry operation. A mold is made of sand mixed in a muller (see
Figure 2.7-9) with water and binders, such as clay or resins. Pitch
is sometimes added to the mold mixture primarily to prevent surface
defects on the castings. A core is a separable part of the mold
used to form a cavity in the casting. Cores are also made of sand
and binders. Cores may be produced by any one of a number of
processes including hot box, cold box, air set, shell and oil-sand

17 In the oil-sand process, after the cores are formed in

methods.
the desired shape, they are cured either in a baking oven (core
oven) at 300-500°F or at room temperature. Curing evaporates

moisture and hardens the sand mixture. Core ovens are fired with

gas or oil.
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Figure 2.7-9. Sand muller.l8
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The potential sources of fugltlve em1551ons in iron foundrles
include raw material receiving, storage and handling, meltlng
furnace charging and tapping, iron inoculation, molten iron trans-
porting and pouring, casting, shakeout, cooling, cleaning and
fiﬁishiﬁg, and core and mold making; Each of these sources is

identified in Figures 2.7-1 and 2.7-2.

2.7.2 Fugitive Dust Emission Factors

The estimated emission factors for iron foundry fugitive
particulate sources are summarized in Table 2.7-1. Most of these
emissions factors are based on "engineering judgment” (source's
terminology) and very sparse test data; They should be considered
of poor reliability. Emission factofs were not included for coke
handling and storage at iron foundries. These factors are discussed
in Section 2.2.2-2. Factors are also not included for raw material
handling, storage and transfer operations due to a lack of data.
These sources are deemed to be insignificant as far as steel/iron
scrap is concerned.

The emission factors for charging and tapping of the various
furnace types, with the exception of electric induction furnaces,
were derived by assuming a percentage of total furnace emissions.
The emission factor for electric induction furnaces represents total
furnace emissions including charging and tapping emissions. No test
data were available; and, therefore, these factors are unconfirmed
and have a very poor reliability rating.

The other emission factors are based upon very sparse test data
and the source's engineering judgment. The reliability rating for

these factors is also very poor.
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 TABLE 2.7-1. FUGITIVE DUST EMISSION FACTORS FOR IRON FOUNORIES

Reliability

Source - Emission factor . | Rating Reference
<::> Cupola furnace charg- | 0.1 to 2.0 1b/ton iron E 1
ing and tapping produced :
<::> Electric arc furnace | 0.7 1b/ton iron chargedd E 19
7 charging and tapping | 1.4 1bs/ton iron charged
(::) Electric induction 1.5 1b/ton iron E 1
furnace melting, produced
‘ charging and tapping
<::> Reverberatory furnace| 0.1 1b/ton iron E 3
charging and tapping produced
<::> Ductile iron inocu- 3.3 to 4.5 1b/ton iron D 4,5
lation produced
Pouring molten metal | 0.1 to 4.13 1b/ton fron D 4,6
X into molds produced
<::> Casting shakeout 1.2 to 12.8 1b/ton iron E 4,7
produced
Cooling and clean- 0.16 to 0.8 1b/ton D 4,7
ing castings castings produced
(::) Finishing castings 0.01 1b/ton castings E 7
produced .
Core and mold sand un-
loading and storage:
mechanical handling | 0.03 1b/ton sand unloaded® E 20
pneumatic handling NA
(::) Core sand and 0.3 1b/ton sand mixed E 2
binder mixing or
0.75 to 8.24 1b/ton iron E 4,7
produced
(::) Core making 0.35 1b/ton cores produced E 2
(::) Core baking - 0.03 to 5.4 1b/ton cores E 759,20
baked
Mold sand preparation| 1.3 1b/ton castings E 4
produced
(::) Mold making 0.04 1b/ton castings - E 7
produced

NA = Not available

aWith no alloying in the ladle.

byith alloying in the ladle.

Csand unloading emission factor is assumed to be equivalent to the taconite pellets
unloading emission factor as presented in Section 2.1.3. Fugitive dust emissions
from storage are estimated to be negligible since sand is normally stored indoors.
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2.7.2 _Particle Characterization?l

The composition and particle size of dusts from various foundry
operatibns will vary considerably. For example, dusts from a casting
shakeout are4mostly very fine carbonaceous material. On the other
hand, dust from the grinding of castings contains coarse, freshly
fractured particles, along with elemental iron, iron oxide and sand
particles. Table 2.7-2 indicates the characteristics and sources
of emissions in various foundry operations.

Much of the information a&ailable on particle characteristics
is for the stack (non-fugitive) emissions from cupola and electric
arc furnaces. However, since such information may be of value in
approximating the particle characteristics of fugitive dust emission
sources such as furnace charging, tapping and leaks, it is presented
in this section.

The range of chemical composition of stack emission components
in cupola dust has been reported in the literature as shown in
Table 2.7-3. Table 2.7-3 indicates that oxides of iron and silicon
and combustible materials form a high proportion of cupola dust.

Particle size distribution studies have been performed for
stack emissions from cdpola furnaces. The data reported in two
major studies is shown in Tables 2.7-4 and 2.7-5. There is very
little information in the literature on whether or not a relation-
ship exists between particle size distribution and chemical
composition of cupola emissions. One source conjectures that a high
percentage of less than 5 micron particles is generally observed
with substantial percentages of metallic oxides. On the other hand,
a high percentage of greater than 4.4 micron particles corresponds
to significant amounts of silicon oxides from foundry returns, dirty

scrap and combustible materials.?’
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TABLE 2.7-2. PARTICULATE EMISSION CHARACTERISTICS FOR VARIOUS
| FOUNDRY OPERATIONS22 |

FOUNDRY OPERATION TYPE PARTICLE SIZE (um)
Raw material storage and charge makeup:
Store metal scrap, coke, limestone, Coke dust Fine to coarse
dolomite, fluorspar, silica sand Limestone and 30 to 1,000
‘ ' sand dust. »
Centrifuge or heat metal borings 011 vaporé .03 to 1
and turnings to remove cutting oil Smoke .01 to .4

Weigh charge materials

Melting:

Cupola furnace

Electric arc melting

Induction furnace

Reverberatory (air) furnace

Furnace charge preheating or drying

Holding furnaces

Duplexing furnaces

Inoculation
Molding, pouring and shakeout:

Molding

Unburned hydro-
carbons

Coke dust
Limestone dust

Fly ash

Coke breeze
Smoke

Metallic oxides
0i1 Vapors

Smoke
Metallic oxides
0il1 vapors

0i1 vapors
Smoke

0i1 vapors
Metallic oxides
Fly ash

Smoke

0i1 vapors
Metallic oxides
Metallic oxides
Iron oxide

0il vapor

0il1 vapor
Metallic oxides

Metal oxides

Sand
Dust

Fine to coarse
30 to 1,000

8 to 20

Fine to coarse
.01 to .4

Up to .7

.03 to 1

.01 to .4
Up to .7
.03 to 1

.01 to .4
.03 to 1
Up to .7
8 to 20

.01 to .4

.03 to 1

75% - 5 to 60
(bottom fired)
0 to 20

(top fired)

Fine to medium
.03 to 1

.03 to 1
Up to .7

Up to .7

Coarse



TABLE 2.7-2. CONTINUED

FOUNDRY OPERATION

TYPE

PARTICLE SIZE (um)

Pouring:

Gray and ductile iron
Malleable

Shakeout

Cleaning and finishing:

Abrasive cleaning

Grinding

Annealing and heat treating

Sand conditioning:

New sand storage
Sand handling system
Sgreening

Mixing

Drying and reclamation

Sand storage

Core making

Baking

Core gases
Facing fumes
Metallic oxides
Fluoride fumes

and fumes

Sand fines
Smoke
Dust

Dust

Metal dust
Sand fines
Abrasives

Vitrified resins

011 vapors

Fines
Fines
Fines

Fines
Flour
Bentonites
Sea coal
Cellulose

Dust
011 vapors

Sand fines
Flour
Binders

Sand fines
Dust

Vapors
Smoke

Magnesium oxide fumes
Synthetic binder smoke

Wheel bond material

Fine to medium

0.1 to .4

50% - 2 to 15
.01 to .4
50% -2 to 15

50% - 2 to 15

Above 7

Fine to medium
50% - 2 to 7
Fine

50% - 2 to 15

.03 to 1

50% - 2 to 15
50% - 2 to 15
50% - 2 to 15

50% - 2 to 15

Fine to medium
Fine to medium
Fine to medium
Fine to medium

50% - 7 to 15
.03 to 1

Fine
50% - 7 to 15

Fine to medium
Fine to medium
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Cﬁemical compbsition of particulate emissions from electric arc
Vfurnacés ét three iron foundries has been reported in one literatﬁre
source and is shown in Table 2.7-6. The main components in these
emissions were iron oxide and silicon dioxide, while sﬁbstantial
" amounts of oxides of manganese, aluminum and magnesium were found.
The emissions consist almost entirely of the oxides of various metals
charged, with lesser amounts of furnace refractories and fluxing

materials which were used.28

TABLE 2.7-6. CHEMICAL ANALYSIS OF PARTICULATE EMISSIONS
FROM AN ELECTRIC ARC FURNACEZ26

Proportion of Total Particulate,
Weight Percent

Constituent Foundry A Foundry B Foundry C
Iron oxide 75-85 75-85 75-85
Silicon dioxide 10 10 10
Magnesium oxide 2 0.8 1
Manganese oxide 2 2 2
Lead oxide 1 2 0.5
Alumina 0.5 1 0.5
Calcium oxide 0.3 0.2 0.8
Zinc oxide 0.2 2 0.3
Copper oxide 0.04 0.03 0.01
Lithium oxide 0.03 0.03 0.03
Tin oxide 0.03 0.3 0.02
Nickel oxide 0.02 0.03 0.01
Chromium oxide 0.02 0.07 0.01
Barium oxide ' 0.02 0.07 0.01
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Particle size distributions of particulate emissions have aisb
been determined for electric arc furnaces at three foundries. These
distributions are shown in Table 2.7-7. It is reported-that particu-
late emissions from electric arc furnace melting and refining are
quite small in diameter. Table 2.7-7, which indicates that 80
percent of the emissions have a particle diameter smaller than 5
microns, confirms this conclusion. A second literature reference
indicates that 90 to 95 percent of the fumes from electric arc
furnaces are below 0.5 microns in size.29 Another literature source
reports that 75 percent of the particulates are less than 5 microns

in diameter with a mass median diameter between 2.27 and 2.33 um.30

TABLE 2.7-7. PARTICLE-SIZE DISTRIBUTION FOR PARTICULAT% EMISSIONS
FROM THREE ELECTRIC-ARC-FURNACE INSTALLATIONS

Cumulative Percent by Weight
for Indicated Particle Diameter
Particle Size (um) Foundry A Foundry B Foundry C
< 1 5 8 18
< 2 15 54 61
< 5 28 80 84
< 10 41 89 91
< 15 55 93 94
< 20 68 96 96
< 50 98 99 99

The chemical composition and particle size distributions of
particulate emissions from both cupolas and electric arc furnaces
are highly variable and are dependent on a number of factors. One
literature source concludes that the type of cupola emissions are
more affected by the gquantity and quality of charge materials, and
that the nature and cleanliness of the charged materials are the
most important factors in determining the type of emission from

electric arc furnaces.32
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2.7.4 Control Methods

Raw material handling, storage and tfansfer operations as such
are not addressed here but are discussed in Section 2.2 for coke
and limestone. These operations for the iron and steel scrap are
assumed to be low emission sources, and no control is recommended.

Reduction of emissions from melting operations is enhanced
when clean scrap is used in the raw charge. Clean materials that
are essentially devoid of dirt, oil or grease carry no extraneous
burden into and through the furnace. Use of clean scrap, ;r the
pre-cleaning of dirty scrap before use, are useful and appropriate
measures worthy of consideration and adjunctive to and supportive
of other control measures. However, it has been reported that the
pre-cleaning of dirty scrap is not economically feasible.33

Charging and tapping emissions from the cupola may be controlled
by hooding the charging and tapping areas and venting the system to
fabric filters or scrubbers. Another system that may be used is
building evacuation and venting to a fabric filter. Proper sizing
of the primary control system to maintain continuous draft through

13 Cupolas

the charging door will help alleviate fugitive emissions.
with above or below charge takeoffs can maintain a strong in-draft
through the charge door and eliminate the escape of fugitive emissions.
Typical control devices used for electric arc or.electric
induction furnaces include a localized, fixed capture hood and a
fabric filter or wet scrubber. The design air volume required to
ventilate an electric arc furnace with an integral hood is approxi-

mately 2,500 cfm per ton of charge.7'34 This level of ventilation

should provide effective capture of charging and tapping emissions.
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Newer furnaces can utilize the above system, canopy hoéds (réof
mounted hoods) or direct shell evacuation.30 The latter two control
measures may nhot be feasible on older fﬁrnaces due to space and
design constraints.

Generally, control measures for charging,‘meiting and- tapping
emissions from reverberatory furnaces have not been required because
of their relatively low emission rates.3> However, collection of
charging and tapping emissions, as well as furnace emissions (if no
stack discharge) is technically feasible thru the use of localized
hooding or building evacuation with exhaust to a fabric filter or
electrostatic precipitator. Such control measures may have to be
implemented especially for reverberatory furnaces that are or will
be using pulverized coal.

Technically feasible methods for capturing fugitive dusts from
all furnace operations include building evacuation or local exhaust
systems. (See Figures 2.7-10 and 2.7-11 for examples.) Building
evacuation to a collection device can control emissions from all
sources in a foundry such as casting shakeout, cooling, cleaning
and finishing. (One source reports that the use of building evacua-
tion or general dilution ventilation systems without separate
primary emission capture is unlikely to provide a sufficient degree
of control for airborne contaminants in most foundries to meet
OSHA's permissible exposure limits for such contaminants.33) On
the other hand, local exhaust control systems generally serve
specific sources. Because of the large exhaust volumes and attend-
ant high operating and capital costs for total building evacuation

systems, the local exhaust methods are usually favored.
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In recent years, ductile irbn~ino¢ulétion étations héVe beeh'
equipped with collecting hoods or have been installed in enclosed
rooms. The evolved gases are exhausted to a dust collection unit.
Medium energy wet scrubbers and fabric filters have been used for
dust collection.38

A side draft hood is often provided for the pouring area, and
the mold cooling conveyor between the pouring and shakeout areas is
often fully hooded with sheet metal. Also, the use of hooding as
illustrated in Figure 2.7-12 is another successful system for
capturing emissions from pouring and mold cooling. In this system,
air is blown downward from the upper edge of the hood along with the
pouring and mold cooling emissions. A variation of this system
consists of utilizing an incoming draft from a floor grating rather
_than from the front edge of the hood. For smaller foundries, a
movable pouring hood as shown in Figure 2.7-13 may be effective.40
In practice, pouring and mold cooling emissions, .especially for
smaller produc;ion and jobbing foundries with non-fixed pouring and
cooling locations, are usually exhausted directly to the atmosphere
without control.4l If control measures are deemed necessary, the
hoods may be vented to Wet scrubbers.
| Fugitive dust emissions from the shakeout. area are usually
collected via a side or bottom draft hood or a partial enclosure.
Duct systems from the shakeout usually lead to a single control
device, frequently a wet scrubber or fabric filter. Figure 2.7-14

illustrates a shakeout with an enclosure vented to a wet scrubber.
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Hooded pouring station.3?

Figure 2.7-12.
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_Flexible

Figure 2.7-13. Movable pouring hood . 42
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Figure 2.7-14. A casting shakeout control‘system.43
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Particulaté emissions from cleaning and finishihg operations’
may be capturedrby local exhaust éystems'cOnnected to eithef*dry
mechanical collectors (i.e., cyclones), fabric filters or.wet
collectors. Particulate emissions from abrasive shot blasting and
tumble cleaners is commonly controlled by fabric filters or medium
energy wet collectors. Dry mechénical collectors are also used at
abrasive cleaning processes. Grinding operations are normally pro-
vided with local exhaust hoods connected to either high efficiency
centrifugal collectors (multiple cyclones) or fabric filters. %4

Coremaking effluents consist primarily of the gases emitted
from the cold box, hot box, bake ovens and shell core machines and
are»usually exhausted to the atmosphere through a ventilation system
or are passed through .an 6dor scrubber before venting to the

atmosphere.44

Core ovens, when operated below 400°F and fired with
natural gas, do not generally require air pollution control equipment
and may.be vented directly to the atmosphere. Emissions can be
reduced by modifying the composition of the core binders and lowering
the baking temperature.45

Medium energy wet collectors are best suited for moist sand
preparatioﬁ and handling. When dry sand conditions exist, fabric
filters are occasionally used. Often some type of hood is used to
capture emissions in sand conveyor systems especially at transfer
points. As with many other processes, ductwork and exhaust fans
are - required in a complete collection system.44 (Figure 2.7-15
illustrates the capture design on a typical sand-handling system.)

Table 2.7-8 summarizes the available control techniques, their

effectiveness, estimated costs and RACM selections.
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